|
""" |
|
=================================== |
|
Sparse arrays (:mod:`scipy.sparse`) |
|
=================================== |
|
|
|
.. currentmodule:: scipy.sparse |
|
|
|
.. toctree:: |
|
:hidden: |
|
|
|
sparse.csgraph |
|
sparse.linalg |
|
sparse.migration_to_sparray |
|
|
|
SciPy 2-D sparse array package for numeric data. |
|
|
|
.. note:: |
|
|
|
This package is switching to an array interface, compatible with |
|
NumPy arrays, from the older matrix interface. We recommend that |
|
you use the array objects (`bsr_array`, `coo_array`, etc.) for |
|
all new work. |
|
|
|
When using the array interface, please note that: |
|
|
|
- ``x * y`` no longer performs matrix multiplication, but |
|
element-wise multiplication (just like with NumPy arrays). To |
|
make code work with both arrays and matrices, use ``x @ y`` for |
|
matrix multiplication. |
|
- Operations such as ``sum``, that used to produce dense matrices, now |
|
produce arrays, whose multiplication behavior differs similarly. |
|
- Sparse arrays use array style *slicing* operations, returning scalars, |
|
1D, or 2D sparse arrays. If you need 2D results, use an appropriate index. |
|
E.g. ``A[:, i, None]`` or ``A[:, [i]]``. |
|
|
|
The construction utilities (`eye`, `kron`, `random`, `diags`, etc.) |
|
have appropriate replacements (see :ref:`sparse-construction-functions`). |
|
|
|
For more information see |
|
:ref:`Migration from spmatrix to sparray <migration_to_sparray>`. |
|
|
|
|
|
Submodules |
|
========== |
|
|
|
.. autosummary:: |
|
|
|
csgraph - Compressed sparse graph routines |
|
linalg - Sparse linear algebra routines |
|
|
|
|
|
Sparse array classes |
|
==================== |
|
|
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
bsr_array - Block Sparse Row array |
|
coo_array - A sparse array in COOrdinate format |
|
csc_array - Compressed Sparse Column array |
|
csr_array - Compressed Sparse Row array |
|
dia_array - Sparse array with DIAgonal storage |
|
dok_array - Dictionary Of Keys based sparse array |
|
lil_array - Row-based list of lists sparse array |
|
sparray - Sparse array base class |
|
|
|
.. _sparse-construction-functions: |
|
|
|
Building sparse arrays |
|
---------------------- |
|
|
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
diags_array - Return a sparse array from diagonals |
|
eye_array - Sparse MxN array whose k-th diagonal is all ones |
|
random_array - Random values in a given shape array |
|
block_array - Build a sparse array from sub-blocks |
|
|
|
.. _combining-arrays: |
|
|
|
Combining arrays |
|
---------------- |
|
|
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
kron - Kronecker product of two sparse arrays |
|
kronsum - Kronecker sum of sparse arrays |
|
block_diag - Build a block diagonal sparse array |
|
tril - Lower triangular portion of a sparse array |
|
triu - Upper triangular portion of a sparse array |
|
hstack - Stack sparse arrays horizontally (column wise) |
|
vstack - Stack sparse arrays vertically (row wise) |
|
|
|
Sparse tools |
|
------------ |
|
|
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
save_npz - Save a sparse array to a file using ``.npz`` format. |
|
load_npz - Load a sparse array from a file using ``.npz`` format. |
|
find - Return the indices and values of the nonzero elements |
|
get_index_dtype - determine a good dtype for index arrays. |
|
safely_cast_index_arrays - cast index array dtype or raise if shape too big |
|
|
|
Identifying sparse arrays |
|
------------------------- |
|
|
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
issparse - Check if the argument is a sparse object (array or matrix). |
|
|
|
|
|
Sparse matrix classes |
|
===================== |
|
|
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
bsr_matrix - Block Sparse Row matrix |
|
coo_matrix - A sparse matrix in COOrdinate format |
|
csc_matrix - Compressed Sparse Column matrix |
|
csr_matrix - Compressed Sparse Row matrix |
|
dia_matrix - Sparse matrix with DIAgonal storage |
|
dok_matrix - Dictionary Of Keys based sparse matrix |
|
lil_matrix - Row-based list of lists sparse matrix |
|
spmatrix - Sparse matrix base class |
|
|
|
Building sparse matrices |
|
------------------------ |
|
|
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
eye - Sparse MxN matrix whose k-th diagonal is all ones |
|
identity - Identity matrix in sparse matrix format |
|
diags - Return a sparse matrix from diagonals |
|
spdiags - Return a sparse matrix from diagonals |
|
bmat - Build a sparse matrix from sparse sub-blocks |
|
random - Random values in a given shape matrix |
|
rand - Random values in a given shape matrix (old interface) |
|
|
|
**Combining matrices use the same functions as for** :ref:`combining-arrays`. |
|
|
|
Identifying sparse matrices |
|
--------------------------- |
|
|
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
issparse |
|
isspmatrix |
|
isspmatrix_csc |
|
isspmatrix_csr |
|
isspmatrix_bsr |
|
isspmatrix_lil |
|
isspmatrix_dok |
|
isspmatrix_coo |
|
isspmatrix_dia |
|
|
|
|
|
Warnings |
|
======== |
|
|
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
SparseEfficiencyWarning |
|
SparseWarning |
|
|
|
|
|
Usage information |
|
================= |
|
|
|
There are seven available sparse array types: |
|
|
|
1. csc_array: Compressed Sparse Column format |
|
2. csr_array: Compressed Sparse Row format |
|
3. bsr_array: Block Sparse Row format |
|
4. lil_array: List of Lists format |
|
5. dok_array: Dictionary of Keys format |
|
6. coo_array: COOrdinate format (aka IJV, triplet format) |
|
7. dia_array: DIAgonal format |
|
|
|
To construct an array efficiently, use any of `coo_array`, |
|
`dok_array` or `lil_array`. `dok_array` and `lil_array` |
|
support basic slicing and fancy indexing with a similar syntax |
|
to NumPy arrays. The COO format does not support indexing (yet) |
|
but can also be used to efficiently construct arrays using coord |
|
and value info. |
|
|
|
Despite their similarity to NumPy arrays, it is **strongly discouraged** |
|
to use NumPy functions directly on these arrays because NumPy typically |
|
treats them as generic Python objects rather than arrays, leading to |
|
unexpected (and incorrect) results. If you do want to apply a NumPy |
|
function to these arrays, first check if SciPy has its own implementation |
|
for the given sparse array class, or **convert the sparse array to |
|
a NumPy array** (e.g., using the `toarray` method of the class) |
|
before applying the method. |
|
|
|
All conversions among the CSR, CSC, and COO formats are efficient, |
|
linear-time operations. |
|
|
|
To perform manipulations such as multiplication or inversion, first |
|
convert the array to either CSC or CSR format. The `lil_array` |
|
format is row-based, so conversion to CSR is efficient, whereas |
|
conversion to CSC is less so. |
|
|
|
Matrix vector product |
|
--------------------- |
|
|
|
To do a vector product between a 2D sparse array and a vector use |
|
the matmul operator (i.e., ``@``) which performs a dot product (like the |
|
``dot`` method): |
|
|
|
>>> import numpy as np |
|
>>> from scipy.sparse import csr_array |
|
>>> A = csr_array([[1, 2, 0], [0, 0, 3], [4, 0, 5]]) |
|
>>> v = np.array([1, 0, -1]) |
|
>>> A @ v |
|
array([ 1, -3, -1], dtype=int64) |
|
|
|
The CSR format is especially suitable for fast matrix vector products. |
|
|
|
Example 1 |
|
--------- |
|
|
|
Construct a 1000x1000 `lil_array` and add some values to it: |
|
|
|
>>> from scipy.sparse import lil_array |
|
>>> from scipy.sparse.linalg import spsolve |
|
>>> from numpy.linalg import solve, norm |
|
>>> from numpy.random import rand |
|
|
|
>>> A = lil_array((1000, 1000)) |
|
>>> A[0, :100] = rand(100) |
|
>>> A.setdiag(rand(1000)) |
|
|
|
Now convert it to CSR format and solve A x = b for x: |
|
|
|
>>> A = A.tocsr() |
|
>>> b = rand(1000) |
|
>>> x = spsolve(A, b) |
|
|
|
Convert it to a dense array and solve, and check that the result |
|
is the same: |
|
|
|
>>> x_ = solve(A.toarray(), b) |
|
|
|
Now we can compute norm of the error with: |
|
|
|
>>> err = norm(x-x_) |
|
>>> err < 1e-10 |
|
True |
|
|
|
It should be small :) |
|
|
|
|
|
Example 2 |
|
--------- |
|
|
|
Construct an array in COO format: |
|
|
|
>>> from scipy import sparse |
|
>>> from numpy import array |
|
>>> I = array([0,3,1,0]) |
|
>>> J = array([0,3,1,2]) |
|
>>> V = array([4,5,7,9]) |
|
>>> A = sparse.coo_array((V,(I,J)),shape=(4,4)) |
|
|
|
Notice that the indices do not need to be sorted. |
|
|
|
Duplicate (i,j) entries are summed when converting to CSR or CSC. |
|
|
|
>>> I = array([0,0,1,3,1,0,0]) |
|
>>> J = array([0,2,1,3,1,0,0]) |
|
>>> V = array([1,1,1,1,1,1,1]) |
|
>>> B = sparse.coo_array((V,(I,J)),shape=(4,4)).tocsr() |
|
|
|
This is useful for constructing finite-element stiffness and mass matrices. |
|
|
|
Further details |
|
--------------- |
|
|
|
CSR column indices are not necessarily sorted. Likewise for CSC row |
|
indices. Use the ``.sorted_indices()`` and ``.sort_indices()`` methods when |
|
sorted indices are required (e.g., when passing data to other libraries). |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
import warnings as _warnings |
|
|
|
from ._base import * |
|
from ._csr import * |
|
from ._csc import * |
|
from ._lil import * |
|
from ._dok import * |
|
from ._coo import * |
|
from ._dia import * |
|
from ._bsr import * |
|
from ._construct import * |
|
from ._extract import * |
|
from ._matrix import spmatrix |
|
from ._matrix_io import * |
|
from ._sputils import get_index_dtype, safely_cast_index_arrays |
|
|
|
|
|
from . import csgraph |
|
|
|
|
|
from . import ( |
|
base, bsr, compressed, construct, coo, csc, csr, data, dia, dok, extract, |
|
lil, sparsetools, sputils |
|
) |
|
|
|
__all__ = [s for s in dir() if not s.startswith('_')] |
|
|
|
|
|
msg = 'the matrix subclass is not the recommended way' |
|
_warnings.filterwarnings('ignore', message=msg) |
|
|
|
from scipy._lib._testutils import PytestTester |
|
test = PytestTester(__name__) |
|
del PytestTester |
|
|