|
--- |
|
tags: |
|
- spacy |
|
- token-classification |
|
language: |
|
- en |
|
model-index: |
|
- name: en_SkillExtraction |
|
results: |
|
- task: |
|
name: NER |
|
type: token-classification |
|
metrics: |
|
- name: NER Precision |
|
type: precision |
|
value: 0.9513964454 |
|
- name: NER Recall |
|
type: recall |
|
value: 0.973283859 |
|
- name: NER F Score |
|
type: f_score |
|
value: 0.9622157007 |
|
--- |
|
| Feature | Description | |
|
| --- | --- | |
|
| **Name** | `en_SkillExtraction` | |
|
| **Version** | `0.0.0` | |
|
| **spaCy** | `>=3.5.3,<3.6.0` | |
|
| **Default Pipeline** | `tok2vec`, `ner` | |
|
| **Components** | `tok2vec`, `ner` | |
|
| **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | |
|
| **Sources** | n/a | |
|
| **License** | n/a | |
|
| **Author** | [n/a]() | |
|
|
|
### Label Scheme |
|
|
|
<details> |
|
|
|
<summary>View label scheme (8 labels for 1 components)</summary> |
|
|
|
| Component | Labels | |
|
| --- | --- | |
|
| **`ner`** | `DESIGNATION`, `EDUCATION`, `EMAIL`, `LANGUAGE`, `NAME`, `PHONE`, `PLACE`, `SKILL` | |
|
|
|
</details> |
|
|
|
### Accuracy |
|
|
|
| Type | Score | |
|
| --- | --- | |
|
| `ENTS_F` | 96.22 | |
|
| `ENTS_P` | 95.14 | |
|
| `ENTS_R` | 97.33 | |
|
| `TOK2VEC_LOSS` | 15547.71 | |
|
| `NER_LOSS` | 105573.97 | |