|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: microsoft/speecht5_tts |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Youtube3kTTSModel |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Youtube3kTTSModel |
|
|
|
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4839 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 5000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 0.6301 | 0.2222 | 100 | 0.5639 | |
|
| 0.6013 | 0.4444 | 200 | 0.5471 | |
|
| 0.5666 | 0.6667 | 300 | 0.5315 | |
|
| 0.5632 | 0.8889 | 400 | 0.5254 | |
|
| 0.5547 | 1.1111 | 500 | 0.5184 | |
|
| 0.5583 | 1.3333 | 600 | 0.5211 | |
|
| 0.5527 | 1.5556 | 700 | 0.5150 | |
|
| 0.5508 | 1.7778 | 800 | 0.5123 | |
|
| 0.5432 | 2.0 | 900 | 0.5135 | |
|
| 0.5478 | 2.2222 | 1000 | 0.5077 | |
|
| 0.5419 | 2.4444 | 1100 | 0.5073 | |
|
| 0.5439 | 2.6667 | 1200 | 0.5083 | |
|
| 0.5381 | 2.8889 | 1300 | 0.5108 | |
|
| 0.5355 | 3.1111 | 1400 | 0.5075 | |
|
| 0.5317 | 3.3333 | 1500 | 0.5053 | |
|
| 0.5345 | 3.5556 | 1600 | 0.5022 | |
|
| 0.5329 | 3.7778 | 1700 | 0.5006 | |
|
| 0.53 | 4.0 | 1800 | 0.4965 | |
|
| 0.5261 | 4.2222 | 1900 | 0.4971 | |
|
| 0.5272 | 4.4444 | 2000 | 0.4976 | |
|
| 0.5272 | 4.6667 | 2100 | 0.4943 | |
|
| 0.5282 | 4.8889 | 2200 | 0.4938 | |
|
| 0.5188 | 5.1111 | 2300 | 0.4980 | |
|
| 0.523 | 5.3333 | 2400 | 0.4894 | |
|
| 0.5225 | 5.5556 | 2500 | 0.4915 | |
|
| 0.5178 | 5.7778 | 2600 | 0.4960 | |
|
| 0.5165 | 6.0 | 2700 | 0.4893 | |
|
| 0.5098 | 6.2222 | 2800 | 0.4892 | |
|
| 0.512 | 6.4444 | 2900 | 0.4868 | |
|
| 0.5177 | 6.6667 | 3000 | 0.4868 | |
|
| 0.5128 | 6.8889 | 3100 | 0.4883 | |
|
| 0.5062 | 7.1111 | 3200 | 0.4852 | |
|
| 0.5104 | 7.3333 | 3300 | 0.4898 | |
|
| 0.5126 | 7.5556 | 3400 | 0.4887 | |
|
| 0.5093 | 7.7778 | 3500 | 0.4908 | |
|
| 0.5075 | 8.0 | 3600 | 0.4828 | |
|
| 0.5029 | 8.2222 | 3700 | 0.4842 | |
|
| 0.5079 | 8.4444 | 3800 | 0.4850 | |
|
| 0.5049 | 8.6667 | 3900 | 0.4853 | |
|
| 0.5034 | 8.8889 | 4000 | 0.4849 | |
|
| 0.4984 | 9.1111 | 4100 | 0.4833 | |
|
| 0.5079 | 9.3333 | 4200 | 0.4863 | |
|
| 0.5023 | 9.5556 | 4300 | 0.4830 | |
|
| 0.5023 | 9.7778 | 4400 | 0.4833 | |
|
| 0.5037 | 10.0 | 4500 | 0.4825 | |
|
| 0.5035 | 10.2222 | 4600 | 0.4822 | |
|
| 0.5011 | 10.4444 | 4700 | 0.4826 | |
|
| 0.4969 | 10.6667 | 4800 | 0.4815 | |
|
| 0.4958 | 10.8889 | 4900 | 0.4839 | |
|
| 0.4972 | 11.1111 | 5000 | 0.4839 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|