layoutlm-funsd / README.md
Monster23's picture
End of training
bb4f425
|
raw
history blame
5.5 kB
metadata
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0668
  • Number-a: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
  • Number-q: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
  • Overall Precision: 0.0
  • Overall Recall: 0.0
  • Overall F1: 0.0
  • Overall Accuracy: 0.9848

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Number-a Number-q Overall Precision Overall Recall Overall F1 Overall Accuracy
1.1627 1.0 1 1.1422 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.2713
1.1655 2.0 2 1.1422 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.2713
1.1695 3.0 3 1.1422 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.2713
1.1661 4.0 4 0.8227 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.8093
0.8478 5.0 5 0.5718 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.9744
0.5975 6.0 6 0.3821 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.9848
0.4052 7.0 7 0.2537 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.9848
0.2676 8.0 8 0.1673 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.9848
0.1775 9.0 9 0.1173 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.9848
0.1266 10.0 10 0.0942 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.9848
0.1017 11.0 11 0.0842 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.9848
0.0891 12.0 12 0.0786 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.9848
0.0845 13.0 13 0.0741 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.9848
0.0788 14.0 14 0.0702 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.9848
0.0763 15.0 15 0.0668 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} 0.0 0.0 0.0 0.9848

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0