|
--- |
|
license: apache-2.0 |
|
language: |
|
- tr |
|
--- |
|
|
|
<img src="./morfoz.jpeg" width="200px"/> |
|
|
|
# Morfoz-LLM-8b-v1.0 |
|
|
|
This model is an extended version of a Llama-3 8B Instruct-based Large Language Model (LLM) for Turkish. It was trained on a cleaned Turkish raw dataset. We utilized Turkish instruction sets created from various open-source for fine-tuning with the LORA method. |
|
## Model Details |
|
|
|
- **Base Model**: Meta Llama 3 8B Instruct |
|
- **Tokenizer Extension**: Specifically extended for Turkish |
|
- **Training Dataset**: Cleaned Turkish raw data with custom Turkish instruction sets |
|
- **Training Method**: Fine-tuning with LORA |
|
|
|
|
|
### LORA Fine-Tuning Configuration |
|
|
|
- `lora_alpha`: 16 |
|
- `lora_dropout`: 0.05 |
|
- `r`: 64 |
|
- `target_modules`: "all-linear" |
|
|
|
## Usage Examples |
|
|
|
```python |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Morfoz-Aigap/Morfoz-LLM-8b-v1.0") |
|
model = AutoModelForCausalLM.from_pretrained("Morfoz-Aigap/Morfoz-LLM-8b-v1.0", torch_dtype=torch.bfloat16, device_map={"": 0},low_cpu_mem_usage=True) |
|
|
|
messages = [ |
|
{"role": "user", "content": "Kırmızı başlıklı kız adında kısa bir çocuk hikayesi yazabilir misin?"} |
|
|
|
] |
|
|
|
top_k = 50 |
|
top_p = 0.9 |
|
temperature = 0.6 |
|
def get_formatted_input(messages): |
|
|
|
for item in messages: |
|
if item['role'] == "user": |
|
item['content'] = item['content'] |
|
break |
|
|
|
conversation = '\n\n'.join(["User: " + item["content"] if item["role"] == "user" else "Assistant: " + item["content"] for item in messages]) + "\n\nAssistant:" |
|
formatted_input = "\n\n" + conversation |
|
|
|
return formatted_input |
|
|
|
formatted_input = get_formatted_input(messages) |
|
print(formatted_input) |
|
tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate(input_ids=tokenized_prompt.input_ids, do_sample = True, attention_mask=tokenized_prompt.attention_mask, max_new_tokens=256, eos_token_id=terminators, top_p=top_p, temperature=temperature) |
|
|
|
response = outputs[0][tokenized_prompt.input_ids.shape[-1]:] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
|
|
|
|
|