language:
- en
tags:
- text-classification
- zero-shot-classification
metrics:
- accuracy
widget:
- text: >-
I first thought that I liked the movie, but upon second thought the movie
was actually disappointing. [SEP] The movie was good.
DeBERTa-v3-base-mnli-fever-docnli-ling-2c
Model description
This model was trained on 1.279.665 hypothesis-premise pairs from 8 NLI datasets: MultiNLI, Fever-NLI, LingNLI and DocNLI (which includes ANLI, QNLI, DUC, CNN/DailyMail, Curation).
It is the only model in the model hub trained on 8 NLI datasets, including DocNLI with very long texts to learn long range reasoning. Note that the model was trained on binary NLI to predict either "entailment" or "not-entailment". The DocNLI merges the classes "neural" and "contradiction" into "not-entailment" to enable the inclusion of the DocNLI dataset.
The base model is DeBERTa-v3-base from Microsoft. The v3 variant of DeBERTa substantially outperforms previous versions of the model by including a different pre-training objective, see annex 11 of the original DeBERTa paper as well as the DeBERTa-V3 paper.
Intended uses & limitations
How to use the model
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_name = "MoritzLaurer/DeBERTa-v3-base-mnli-fever-docnli-ling-2c"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing."
hypothesis = "The movie was good."
input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
prediction = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)}
print(prediction)
Training data
This model was trained on 1.279.665 hypothesis-premise pairs from 8 NLI datasets: MultiNLI, Fever-NLI, LingNLI and DocNLI (which includes ANLI, QNLI, DUC, CNN/DailyMail, Curation).
Training procedure
DeBERTa-v3-small-mnli-fever-docnli-ling-2c was trained using the Hugging Face trainer with the following hyperparameters.
training_args = TrainingArguments(
num_train_epochs=3, # total number of training epochs
learning_rate=2e-05,
per_device_train_batch_size=32, # batch size per device during training
per_device_eval_batch_size=32, # batch size for evaluation
warmup_ratio=0.1, # number of warmup steps for learning rate scheduler
weight_decay=0.06, # strength of weight decay
fp16=True # mixed precision training
)
Eval results
The model was evaluated using the binary test sets for MultiNLI and ANLI and the binary dev set for Fever-NLI (two classes instead of three). The metric used is accuracy.
mnli-m-2c | mnli-mm-2c | fever-nli-2c | anli-all-2c | anli-r3-2c | lingnli-2c |
---|---|---|---|---|---|
0.935 | 0.933 | 0.897 | 0.710 | 0.678 | 0.895 |
Limitations and bias
Please consult the original DeBERTa paper and literature on different NLI datasets for potential biases.
BibTeX entry and citation info
If you want to cite this model, please cite the original DeBERTa paper, the respective NLI datasets and include a link to this model on the Hugging Face hub.