MostafaKhidr's picture
End of training
c30d5f5 verified
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Arabic - Mostafa Khedr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: ar
          split: None
          args: 'config: ar, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 38.02222018180149

Whisper Medium Arabic - Mostafa Khedr

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2691
  • Wer: 38.0222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2453 0.4156 1000 0.3289 42.9602
0.2326 0.8313 2000 0.2976 42.0990
0.139 1.2469 3000 0.2883 41.0376
0.1081 1.6625 4000 0.2720 39.0763
0.0543 2.0781 5000 0.2691 38.0222

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1