English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer.
Feature | Description |
---|---|
Name | en_motorinc_nlp |
Version | 0.0.2 |
spaCy | >=3.7.2,<3.8.0 |
Default Pipeline | tok2vec , tagger , parser , attribute_ruler , lemmatizer , entity_ruler , normalize_engine_displacement |
Components | tok2vec , tagger , parser , senter , attribute_ruler , lemmatizer , ner , entity_ruler , normalize_engine_displacement |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston) ClearNLP Constituent-to-Dependency Conversion (Emory University) WordNet 3.0 (Princeton University) |
License | MIT |
Author | Explosion |
Label Scheme
View label scheme (121 labels for 4 components)
Component | Labels |
---|---|
tagger |
$ , '' , , , -LRB- , -RRB- , . , : , ADD , AFX , CC , CD , DT , EX , FW , HYPH , IN , JJ , JJR , JJS , LS , MD , NFP , NN , NNP , NNPS , NNS , PDT , POS , PRP , PRP$ , RB , RBR , RBS , RP , SYM , TO , UH , VB , VBD , VBG , VBN , VBP , VBZ , WDT , WP , WP$ , WRB , XX , _SP , ```` |
parser |
ROOT , acl , acomp , advcl , advmod , agent , amod , appos , attr , aux , auxpass , case , cc , ccomp , compound , conj , csubj , csubjpass , dative , dep , det , dobj , expl , intj , mark , meta , neg , nmod , npadvmod , nsubj , nsubjpass , nummod , oprd , parataxis , pcomp , pobj , poss , preconj , predet , prep , prt , punct , quantmod , relcl , xcomp |
ner |
CARDINAL , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , NORP , ORDINAL , ORG , PERCENT , PERSON , PRODUCT , QUANTITY , TIME , WORK_OF_ART |
entity_ruler |
Brand , EngineDisplacement , Feature , FeatureCategory , FuelType , ProductType , Vehicle , VehicleCategory |
Accuracy
Type | Score |
---|---|
TOKEN_ACC |
99.86 |
TOKEN_P |
99.57 |
TOKEN_R |
99.58 |
TOKEN_F |
99.57 |
TAG_ACC |
97.25 |
SENTS_P |
92.02 |
SENTS_R |
89.21 |
SENTS_F |
90.59 |
DEP_UAS |
91.75 |
DEP_LAS |
89.87 |
ENTS_P |
84.55 |
ENTS_R |
84.57 |
ENTS_F |
84.56 |
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- NER Precisionself-reported0.845
- NER Recallself-reported0.846
- NER F Scoreself-reported0.846
- TAG (XPOS) Accuracyself-reported0.972
- Unlabeled Attachment Score (UAS)self-reported0.918
- Labeled Attachment Score (LAS)self-reported0.899
- Sentences F-Scoreself-reported0.906