|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:429643 |
|
- loss:CosineSimilarityLoss |
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
widget: |
|
- source_sentence: Oracle Cloud - Infrastructure and Platform Services for Enterprises |
|
sentences: |
|
- PulseAudio - Ubuntu Wiki |
|
- Documentation page not found - Read the Docs |
|
- Dwarf Fortress beginner tips - Video Games on Sports Illustrated |
|
- source_sentence: Suggest opt in User Test - Google Slides |
|
sentences: |
|
- ReleaseEngineering/TryServer - MozillaWiki |
|
- Dwarf Fortress beginner tips - Video Games on Sports Illustrated |
|
- Tutanota - Private Mailbox with End-to-End Encryption and Calendar |
|
- source_sentence: https://portal.naviabenefits.com/part/prioritytasks.aspx |
|
sentences: |
|
- What to Expect - Pregnancy and Parenting Tips, Week-by-Week Guides |
|
- Parents.com - Articles, Recipes, and Ideas for Family Activities |
|
- Pinterest - Boards for Collecting and Sharing Inspiration on Any Topic |
|
- source_sentence: Apple Music - Web Player |
|
sentences: |
|
- BMW Connected Drive - Home Assistant |
|
- Mary Stewart Phillips (1862-1928) - Find a Grave Memorial |
|
- Sky Sports - Football, Formula 1, Cricket, and More |
|
- source_sentence: Tidal - High-Fidelity Music Streaming with Master Quality Audio |
|
sentences: |
|
- Walmart - Everyday Low Prices on Groceries, Electronics, and More |
|
- Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis |
|
- Ambient Dreams Playlist on Amazon Music |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9822505655251419 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.2607864200673379 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("vazish/all-MiniLM-L6-v2-fine-tuned_0") |
|
# Run inference |
|
sentences = [ |
|
'Tidal - High-Fidelity Music Streaming with Master Quality Audio', |
|
'Walmart - Everyday Low Prices on Groceries, Electronics, and More', |
|
'Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.9823 | |
|
| **spearman_cosine** | **0.2608** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 49,800 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 10 tokens</li><li>mean: 14.76 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 14.64 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.04</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:-----------------| |
|
| <code>TripAdvisor - Hotel Reviews, Photos, and Travel Forums</code> | <code>Docker Hub - Container Image Repository for DevOps Environments</code> | <code>0.0</code> | |
|
| <code>Mastodon - Decentralized Social Media for Niche Communities</code> | <code>Allrecipes - User-Submitted Recipes, Reviews, and Cooking Tips</code> | <code>0.0</code> | |
|
| <code>YouTube Music - Music Videos, Official Albums, and Live Performances</code> | <code>ESPN - Sports News, Live Scores, Stats, and Highlights</code> | <code>0.0</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | spearman_cosine | |
|
|:------:|:-----:|:-------------:|:---------------:| |
|
| 0.0372 | 500 | 0.0218 | - | |
|
| 0.0745 | 1000 | 0.0151 | - | |
|
| 0.1117 | 1500 | 0.0113 | - | |
|
| 0.1490 | 2000 | 0.0076 | - | |
|
| 0.1862 | 2500 | 0.0063 | - | |
|
| 0.2234 | 3000 | 0.0054 | - | |
|
| 0.2607 | 3500 | 0.0045 | - | |
|
| 0.2979 | 4000 | 0.0041 | - | |
|
| 0.3351 | 4500 | 0.0027 | - | |
|
| 0.3724 | 5000 | 0.0028 | - | |
|
| 0.4096 | 5500 | 0.0026 | - | |
|
| 0.4469 | 6000 | 0.0021 | - | |
|
| 0.4841 | 6500 | 0.0019 | - | |
|
| 0.5213 | 7000 | 0.0022 | - | |
|
| 0.5586 | 7500 | 0.0017 | - | |
|
| 0.5958 | 8000 | 0.0018 | - | |
|
| 0.6331 | 8500 | 0.0015 | - | |
|
| 0.6703 | 9000 | 0.0015 | - | |
|
| 0.7075 | 9500 | 0.0018 | - | |
|
| 0.7448 | 10000 | 0.0014 | - | |
|
| 0.7820 | 10500 | 0.0017 | - | |
|
| 0.8192 | 11000 | 0.0012 | - | |
|
| 0.8565 | 11500 | 0.0014 | - | |
|
| 0.8937 | 12000 | 0.001 | - | |
|
| 0.9310 | 12500 | 0.0011 | - | |
|
| 0.9682 | 13000 | 0.001 | - | |
|
| 1.0054 | 13500 | 0.0009 | - | |
|
| 1.0427 | 14000 | 0.0011 | - | |
|
| 1.0799 | 14500 | 0.001 | - | |
|
| 1.1172 | 15000 | 0.0009 | - | |
|
| 1.1544 | 15500 | 0.0008 | - | |
|
| 1.1916 | 16000 | 0.001 | - | |
|
| 1.2289 | 16500 | 0.0011 | - | |
|
| 1.2661 | 17000 | 0.0011 | - | |
|
| 1.3033 | 17500 | 0.0006 | - | |
|
| 1.3406 | 18000 | 0.0011 | - | |
|
| 1.3778 | 18500 | 0.0008 | - | |
|
| 1.4151 | 19000 | 0.0011 | - | |
|
| 1.4523 | 19500 | 0.0009 | - | |
|
| 1.4895 | 20000 | 0.0011 | - | |
|
| 1.5268 | 20500 | 0.0009 | - | |
|
| 1.5640 | 21000 | 0.0009 | - | |
|
| 1.6013 | 21500 | 0.0008 | - | |
|
| 1.6385 | 22000 | 0.0005 | - | |
|
| 1.6757 | 22500 | 0.001 | - | |
|
| 1.7130 | 23000 | 0.0008 | - | |
|
| 1.7502 | 23500 | 0.0007 | - | |
|
| 1.7874 | 24000 | 0.0007 | - | |
|
| 1.8247 | 24500 | 0.0008 | - | |
|
| 1.8619 | 25000 | 0.001 | - | |
|
| 1.8992 | 25500 | 0.0009 | - | |
|
| 1.9364 | 26000 | 0.0008 | - | |
|
| 1.9736 | 26500 | 0.0009 | - | |
|
| 2.0109 | 27000 | 0.0007 | - | |
|
| 2.0481 | 27500 | 0.0006 | - | |
|
| 2.0854 | 28000 | 0.0007 | - | |
|
| 2.1226 | 28500 | 0.0006 | - | |
|
| 2.1598 | 29000 | 0.0007 | - | |
|
| 2.1971 | 29500 | 0.001 | - | |
|
| 2.2343 | 30000 | 0.0006 | - | |
|
| 2.2715 | 30500 | 0.0006 | - | |
|
| 2.3088 | 31000 | 0.001 | - | |
|
| 2.3460 | 31500 | 0.0007 | - | |
|
| 2.3833 | 32000 | 0.0008 | - | |
|
| 2.4205 | 32500 | 0.0006 | - | |
|
| 2.4577 | 33000 | 0.0007 | - | |
|
| 2.4950 | 33500 | 0.0007 | - | |
|
| 2.5322 | 34000 | 0.001 | - | |
|
| 2.5694 | 34500 | 0.0007 | - | |
|
| 2.6067 | 35000 | 0.0007 | - | |
|
| 2.6439 | 35500 | 0.0008 | - | |
|
| 2.6812 | 36000 | 0.0007 | - | |
|
| 2.7184 | 36500 | 0.0006 | - | |
|
| 2.7556 | 37000 | 0.0007 | - | |
|
| 2.7929 | 37500 | 0.0007 | - | |
|
| 2.8301 | 38000 | 0.0005 | - | |
|
| 2.8674 | 38500 | 0.0009 | - | |
|
| 2.9046 | 39000 | 0.0006 | - | |
|
| 2.9418 | 39500 | 0.0007 | - | |
|
| 2.9791 | 40000 | 0.0008 | - | |
|
| -1 | -1 | - | 0.2608 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.11 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.48.2 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |
|
|