INFERENCE

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import time
import torch
import re

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = AutoModelForSequenceClassification.from_pretrained("Mr-Vicky-01/helping_agent_classification").to(device)
tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/helping_agent_classification")

start = time.time()
question = "show my critical vulns"
print("Question: ", question)

question = re.sub(r"[,?.'\"']", '', question)
inputs = tokenizer(question.lower(), return_tensors="pt").to(device)
with torch.no_grad():
    logits = model(**inputs).logits

predicted_class_id = logits.argmax().item()
print("predicted_class: ", model.config.id2label[predicted_class_id])

print("Time_taken: ", time.time() - start)
Downloads last month
52
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.