INFERENCE

import time
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
finetuned_model = AutoModelForCausalLM.from_pretrained("Mr-Vicky-01/security-assistant")
tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/security-assistant")

finetuned_model.to(device)

prompt = """<|im_start|>system
You are a helpful AI assistant named Securitron<|im_end|>
<|im_start|>user
cwe_id:CWE-20
cwe_name:Improper Input Validation
affected_line:Pattern Undefined (v3)
partial_code:example: c4d5ea2f-81a2-4a05-bcd3-202126ae21df
        name:
          type: string
          example: Toolbox
        serial:
file_name:itemit_openapi.yaml
status:True Positive
reason: There is no pattern property that could lead to insufficient input validation.
remediation_action: Always define a pattern to ensure strict input validation.

How to fix this?<|im_end|>
<|im_start|>assistant
"""

s = time.time()

encodeds = tokenizer(prompt, return_tensors="pt",truncation=True).input_ids.to(device)
text_streamer = TextStreamer(tokenizer, skip_prompt = True)

# Increase max_new_tokens if needed
response = finetuned_model.generate(
        input_ids=encodeds,
        streamer=text_streamer,
        max_new_tokens=512,
        use_cache=True,
        pad_token_id=151645,
        eos_token_id=151645,
        num_return_sequences=1
    )
e = time.time()
print(f'time taken:{e-s}')
Downloads last month
17
Safetensors
Model size
494M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.