voiceGUARD / app.py
Mrkomiljon's picture
Create app.py
702aa95 verified
raw
history blame
1.34 kB
import gradio as gr
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
import torch
import torchaudio
model_name = "Mrkomiljon/voiceGUARD/wav2vec2_finetuned_model"
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
processor = Wav2Vec2Processor.from_pretrained(model_name)
model.eval()
def classify_audio(audio_file):
waveform, sample_rate = torchaudio.load(audio_file)
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
waveform = resampler(waveform)
if waveform.size(1) > 16000 * 10:
waveform = waveform[:, :16000 * 10]
elif waveform.size(1) < 16000 * 10:
waveform = torch.nn.functional.pad(waveform, (0, 16000 * 10 - waveform.size(1)))
if waveform.ndim > 1:
waveform = waveform[0]
inputs = processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label = logits.argmax(dim=-1).item()
return predicted_label
interface = gr.Interface(
fn=classify_audio,
inputs=gr.Audio(source="upload", type="filepath"),
outputs="label",
title="Audio Classifier",
description="Upload an audio file to classify its label as AI-generated or Real."
)
interface.launch()