layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7403
  • Answer: {'precision': 0.73, 'recall': 0.8121137206427689, 'f1': 0.7688706846108836, 'number': 809}
  • Header: {'precision': 0.3611111111111111, 'recall': 0.4369747899159664, 'f1': 0.3954372623574144, 'number': 119}
  • Question: {'precision': 0.7853962600178095, 'recall': 0.828169014084507, 'f1': 0.8062157221206582, 'number': 1065}
  • Overall Precision: 0.7342
  • Overall Recall: 0.7983
  • Overall F1: 0.7649
  • Overall Accuracy: 0.8101

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.3197 1.0 10 1.0997 {'precision': 0.34190231362467866, 'recall': 0.3288009888751545, 'f1': 0.3352236925015753, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5646958011996572, 'recall': 0.6187793427230047, 'f1': 0.5905017921146953, 'number': 1065} 0.4756 0.4641 0.4698 0.6432
0.9556 2.0 20 0.8488 {'precision': 0.5481481481481482, 'recall': 0.6402966625463535, 'f1': 0.5906499429874572, 'number': 809} {'precision': 0.038461538461538464, 'recall': 0.008403361344537815, 'f1': 0.013793103448275862, 'number': 119} {'precision': 0.6639566395663956, 'recall': 0.6901408450704225, 'f1': 0.6767955801104972, 'number': 1065} 0.6035 0.6292 0.6161 0.7343
0.7263 3.0 30 0.7385 {'precision': 0.645397489539749, 'recall': 0.7626699629171817, 'f1': 0.6991501416430596, 'number': 809} {'precision': 0.11320754716981132, 'recall': 0.05042016806722689, 'f1': 0.06976744186046512, 'number': 119} {'precision': 0.7092013888888888, 'recall': 0.7671361502347418, 'f1': 0.7370320252593595, 'number': 1065} 0.6664 0.7225 0.6933 0.7743
0.5842 4.0 40 0.6892 {'precision': 0.6642487046632124, 'recall': 0.792336217552534, 'f1': 0.7226606538895153, 'number': 809} {'precision': 0.21686746987951808, 'recall': 0.15126050420168066, 'f1': 0.1782178217821782, 'number': 119} {'precision': 0.7226027397260274, 'recall': 0.7924882629107981, 'f1': 0.7559337214509628, 'number': 1065} 0.6782 0.7541 0.7142 0.7964
0.4945 5.0 50 0.6673 {'precision': 0.6974416017797553, 'recall': 0.7750309023485785, 'f1': 0.734192037470726, 'number': 809} {'precision': 0.30337078651685395, 'recall': 0.226890756302521, 'f1': 0.2596153846153846, 'number': 119} {'precision': 0.7408637873754153, 'recall': 0.8375586854460094, 'f1': 0.7862494490965183, 'number': 1065} 0.7053 0.7757 0.7388 0.8033
0.4343 6.0 60 0.6592 {'precision': 0.6962962962962963, 'recall': 0.8133498145859085, 'f1': 0.750285062713797, 'number': 809} {'precision': 0.29411764705882354, 'recall': 0.25210084033613445, 'f1': 0.27149321266968324, 'number': 119} {'precision': 0.7504173622704507, 'recall': 0.844131455399061, 'f1': 0.7945205479452054, 'number': 1065} 0.7069 0.7963 0.7489 0.8077
0.3681 7.0 70 0.6624 {'precision': 0.7049891540130152, 'recall': 0.8034610630407911, 'f1': 0.7510109763142693, 'number': 809} {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119} {'precision': 0.7659758203799655, 'recall': 0.8328638497652582, 'f1': 0.7980206927575348, 'number': 1065} 0.7140 0.7903 0.7502 0.8090
0.3312 8.0 80 0.6825 {'precision': 0.7097826086956521, 'recall': 0.8071693448702101, 'f1': 0.7553499132446501, 'number': 809} {'precision': 0.32142857142857145, 'recall': 0.37815126050420167, 'f1': 0.3474903474903475, 'number': 119} {'precision': 0.7703056768558952, 'recall': 0.828169014084507, 'f1': 0.7981900452488688, 'number': 1065} 0.7166 0.7928 0.7527 0.8078
0.2955 9.0 90 0.7009 {'precision': 0.7141316073354909, 'recall': 0.8182941903584673, 'f1': 0.7626728110599078, 'number': 809} {'precision': 0.3493150684931507, 'recall': 0.42857142857142855, 'f1': 0.38490566037735846, 'number': 119} {'precision': 0.7753108348134992, 'recall': 0.819718309859155, 'f1': 0.7968963943404839, 'number': 1065} 0.7212 0.7958 0.7567 0.8034
0.2888 10.0 100 0.6894 {'precision': 0.7125813449023861, 'recall': 0.8121137206427689, 'f1': 0.7590987868284228, 'number': 809} {'precision': 0.37272727272727274, 'recall': 0.3445378151260504, 'f1': 0.35807860262008734, 'number': 119} {'precision': 0.7917783735478106, 'recall': 0.831924882629108, 'f1': 0.8113553113553114, 'number': 1065} 0.7364 0.7948 0.7645 0.8140
0.2482 11.0 110 0.7131 {'precision': 0.7191854233654876, 'recall': 0.8294190358467244, 'f1': 0.7703788748564868, 'number': 809} {'precision': 0.3, 'recall': 0.40336134453781514, 'f1': 0.34408602150537637, 'number': 119} {'precision': 0.7843833185448092, 'recall': 0.8300469483568075, 'f1': 0.8065693430656934, 'number': 1065} 0.7221 0.8043 0.7610 0.8084
0.2297 12.0 120 0.7189 {'precision': 0.7373167981961668, 'recall': 0.8084054388133498, 'f1': 0.7712264150943396, 'number': 809} {'precision': 0.3484848484848485, 'recall': 0.3865546218487395, 'f1': 0.3665338645418326, 'number': 119} {'precision': 0.7730434782608696, 'recall': 0.8347417840375587, 'f1': 0.8027088036117382, 'number': 1065} 0.7326 0.7973 0.7636 0.8125
0.2168 13.0 130 0.7283 {'precision': 0.723986856516977, 'recall': 0.8170580964153276, 'f1': 0.7677119628339142, 'number': 809} {'precision': 0.33793103448275863, 'recall': 0.4117647058823529, 'f1': 0.37121212121212116, 'number': 119} {'precision': 0.7878245299910475, 'recall': 0.8262910798122066, 'f1': 0.8065994500458296, 'number': 1065} 0.7310 0.7978 0.7630 0.8099
0.2011 14.0 140 0.7318 {'precision': 0.7338530066815144, 'recall': 0.8145859085290482, 'f1': 0.7721148213239603, 'number': 809} {'precision': 0.3493150684931507, 'recall': 0.42857142857142855, 'f1': 0.38490566037735846, 'number': 119} {'precision': 0.7833775419982316, 'recall': 0.831924882629108, 'f1': 0.8069216757741348, 'number': 1065} 0.7338 0.8008 0.7658 0.8112
0.1948 15.0 150 0.7391 {'precision': 0.7216721672167217, 'recall': 0.8108776266996292, 'f1': 0.7636786961583235, 'number': 809} {'precision': 0.3561643835616438, 'recall': 0.4369747899159664, 'f1': 0.39245283018867927, 'number': 119} {'precision': 0.7848214285714286, 'recall': 0.8253521126760563, 'f1': 0.8045766590389016, 'number': 1065} 0.7297 0.7963 0.7615 0.8076
0.1955 16.0 160 0.7403 {'precision': 0.73, 'recall': 0.8121137206427689, 'f1': 0.7688706846108836, 'number': 809} {'precision': 0.3611111111111111, 'recall': 0.4369747899159664, 'f1': 0.3954372623574144, 'number': 119} {'precision': 0.7853962600178095, 'recall': 0.828169014084507, 'f1': 0.8062157221206582, 'number': 1065} 0.7342 0.7983 0.7649 0.8101

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MuafiraThasni/layoutlm-funsd

Finetuned
(145)
this model