metadata
base_model: unsloth/Phi-3.5-mini-instruct
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
This page is work in progress!
Overview
The Fhi-3.5-mini-instruct is a fine-tuned version of the unsloth/Phi-3.5-mini-instruct model, optimized for function-calling.
Usage
Here’s a basic example of how to use function calling with the Fhi-3.5-mini-instruct model:
def get_current_temperature(location: str) -> float:
"""
Get the current temperature at a location.
Args:
location: The location to get the temperature for, in the format "City, Country"
Returns:
The current temperature at the specified location in the specified units, as a float.
"""
return 22.
# Create the messages list
messages = [
{"role": "system", "content": "You are a helpful weather assistant."},
{"role": "user", "content": "What's the current weather in London and New York? Please use Celsius."}
]
# Apply the chat template
prompt = tokenizer.apply_chat_template(
messages,
tools=[get_current_temperature], # Pass the custom tool
add_generation_prompt=True,
tokenize=False
)
inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, use_cache=True, temperature=0.001, top_p=1, eos_token_id=[32007])
resu = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
print(resu)
The result will look like this:
[
{'name': 'get_current_temperature', 'arguments': {'location': 'London, UK'}},
{'name': 'get_current_temperature', 'arguments': {'location': 'New York, USA'}}
]
Testing and Benchmarking
This model is still undergoing testing and evaluation. Use it at your own risk until further validation is complete. Performance on benchmarks like MMLU and MMLU-Pro will be updated soon.
Benchmark | Fhi-3.5 Mini-Ins | Phi-3.5 Mini-Ins | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) |
---|---|---|---|---|---|---|---|---|
Multilingual MMLU | ____ | 55.4 | 47.4 | 58.9 | 56.2 | 63.8 | 77.2 | 72.9 |
MMLU (5-shot) | __ | 69 | 60.3 | 67.2 | 68.1 | 71.3 | 78.7 | 77.2 |
MMLU-Pro (3-shot, CoT) | __ | 47.4 | 18 | 40.7 | 44 | 50.1 | 57.2 | 62.8 |
Credits
Will be updated soon