SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v13")
# Run inference
sentences = [
"View Salesforce View Workday View GCP View Azure View Oracle View Learn more Regulations Automate compliance with global privacy regulations. US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \\+ More View Learn more Roles Identify data risk and enable protection & control. Privacy View Security View Governance View Marketing View Resources Blog Read through our articles written by industry experts Collateral Product broch",
'What resources are available for learning more about GCP?',
"What are the key provisions of South Korea's data privacy law?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3299 |
cosine_accuracy@3 | 0.567 |
cosine_accuracy@5 | 0.6392 |
cosine_accuracy@10 | 0.7216 |
cosine_precision@1 | 0.3299 |
cosine_precision@3 | 0.189 |
cosine_precision@5 | 0.1278 |
cosine_precision@10 | 0.0722 |
cosine_recall@1 | 0.3299 |
cosine_recall@3 | 0.567 |
cosine_recall@5 | 0.6392 |
cosine_recall@10 | 0.7216 |
cosine_ndcg@10 | 0.5188 |
cosine_mrr@10 | 0.4545 |
cosine_map@100 | 0.4661 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3402 |
cosine_accuracy@3 | 0.5773 |
cosine_accuracy@5 | 0.6392 |
cosine_accuracy@10 | 0.7113 |
cosine_precision@1 | 0.3402 |
cosine_precision@3 | 0.1924 |
cosine_precision@5 | 0.1278 |
cosine_precision@10 | 0.0711 |
cosine_recall@1 | 0.3402 |
cosine_recall@3 | 0.5773 |
cosine_recall@5 | 0.6392 |
cosine_recall@10 | 0.7113 |
cosine_ndcg@10 | 0.5235 |
cosine_mrr@10 | 0.4633 |
cosine_map@100 | 0.4751 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2784 |
cosine_accuracy@3 | 0.5155 |
cosine_accuracy@5 | 0.5979 |
cosine_accuracy@10 | 0.701 |
cosine_precision@1 | 0.2784 |
cosine_precision@3 | 0.1718 |
cosine_precision@5 | 0.1196 |
cosine_precision@10 | 0.0701 |
cosine_recall@1 | 0.2784 |
cosine_recall@3 | 0.5155 |
cosine_recall@5 | 0.5979 |
cosine_recall@10 | 0.701 |
cosine_ndcg@10 | 0.4837 |
cosine_mrr@10 | 0.4146 |
cosine_map@100 | 0.4266 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3196 |
cosine_accuracy@3 | 0.4948 |
cosine_accuracy@5 | 0.5979 |
cosine_accuracy@10 | 0.6804 |
cosine_precision@1 | 0.3196 |
cosine_precision@3 | 0.1649 |
cosine_precision@5 | 0.1196 |
cosine_precision@10 | 0.068 |
cosine_recall@1 | 0.3196 |
cosine_recall@3 | 0.4948 |
cosine_recall@5 | 0.5979 |
cosine_recall@10 | 0.6804 |
cosine_ndcg@10 | 0.4849 |
cosine_mrr@10 | 0.4237 |
cosine_map@100 | 0.4348 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2577 |
cosine_accuracy@3 | 0.4742 |
cosine_accuracy@5 | 0.567 |
cosine_accuracy@10 | 0.6495 |
cosine_precision@1 | 0.2577 |
cosine_precision@3 | 0.1581 |
cosine_precision@5 | 0.1134 |
cosine_precision@10 | 0.0649 |
cosine_recall@1 | 0.2577 |
cosine_recall@3 | 0.4742 |
cosine_recall@5 | 0.567 |
cosine_recall@10 | 0.6495 |
cosine_ndcg@10 | 0.4465 |
cosine_mrr@10 | 0.3822 |
cosine_map@100 | 0.3941 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 872 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 89 tokens
- mean: 229.38 tokens
- max: 414 tokens
- min: 9 tokens
- mean: 21.92 tokens
- max: 102 tokens
- Samples:
positive anchor controller should inform the data subject in every situation where his or her personal data is processed. The LPPD provides a general requirement to provide information on the collection methods but does not explicitly refer to automated decision-making or profiling. vs Articles: 5 14, Recitals: 58 63 This right requires the controller to provide the following information to the data subject when requested. This should be given in a concise, transparent, intelligible, and easily accessible form, using plain language: The identity and contact details of the controller, controller’s representative, and DPO, where applicable The purpose and the legal basis of the processing The categories of personal data concerned The recipients of the personal data The appropriate or suitable safeguards and the means to obtain a copy of them or where they have been made available The controller must provide information necessary to ensure fair and transparent processing whether or not the personal
What information must the controller provide regarding their identity and contact details?
and deletions, and manage all vendor contracts and compliance documents. ## Key Rights Under Ghana’s Data Protection Act 2012 Right to be Informed : Data subjects have the right to be informed of the processing of their personal data and the purposes for which the data is processed. Right to Access: Data subjects have the right to obtain confirmation whether or not the controller holds personal data about them, access their personal data, and obtain descriptions of data recipients. Right to Rectification : Under the right to rectification, data subjects can request the correction of their data. Right to Erasure: Data subjects have the right to request the erasure and destruction of the data that is no longer needed by the organization. Right to Object: The data subject has the right to prevent the data controller from processing personal data if such processing causes or is likely to cause unwarranted damage or distress to the data
What are the key rights provided to data subjects under Ghana's Data Protection Act 2012?
aim to protect personal data, they have differences in scope, requirements, and applicability. PDPA applies to Thailand, while GDPR applies to the European Union. The effect of PDPA in Thailand is to regulate how personal data is processed, collected, used, and protected by individuals and organizations in the country. Thailand's PDPA includes provisions related to personal data breach notifications, requiring data controllers to notify the Personal Data Protection Committee (PDPC) of a personal data breach as soon as possible, preferably within 72 hours of becoming aware of it. The principles of PDPA in Thailand include obtaining consent, especially for minors, ensuring data security, issuing timely data breach notifications, designating a data protection officer, conducting data protection impact assessments, maintaining a record of processing activities, and ensuring adequate standards when transferring data across borders. ## Join Our Newsletter Get all the latest information, law updates and more delivered to your inbox ### Share
What is the role of obtaining consent in Thailand's PDPA?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 2lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.3571 | 10 | 6.4098 | - | - | - | - | - |
0.7143 | 20 | 4.9339 | - | - | - | - | - |
1.0 | 28 | - | 0.4266 | 0.4263 | 0.4703 | 0.3934 | 0.4650 |
1.0714 | 30 | 3.7606 | - | - | - | - | - |
1.4286 | 40 | 2.5546 | - | - | - | - | - |
1.7857 | 50 | 3.1845 | - | - | - | - | - |
2.0 | 56 | - | 0.4348 | 0.4266 | 0.4751 | 0.3941 | 0.4661 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MugheesAwan11/bge-base-securiti-dataset-1-v13
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.330
- Cosine Accuracy@3 on dim 768self-reported0.567
- Cosine Accuracy@5 on dim 768self-reported0.639
- Cosine Accuracy@10 on dim 768self-reported0.722
- Cosine Precision@1 on dim 768self-reported0.330
- Cosine Precision@3 on dim 768self-reported0.189
- Cosine Precision@5 on dim 768self-reported0.128
- Cosine Precision@10 on dim 768self-reported0.072
- Cosine Recall@1 on dim 768self-reported0.330
- Cosine Recall@3 on dim 768self-reported0.567