File size: 37,819 Bytes
454badc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:872
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: 'amendements to PIPA came into force on 05 Auguest 2020. 2 Some
    parts of PIPA also apply to online service providers. 3 The latest amendment to
    PIPA has introduced the concept of ‘pseudonymised data’ for the feasibility of
    data economy. 4 Under the PIPA, all data handlers must appoint a chief privacy
    officer. 5 Cookies, IP information, etc. are also regulated by the PIPA as personal
    information. 6 Breach of a corrective order issued by the PIPC can lead to an
    administrative fine of not more than KRW 30 million. ### Forrester Names Securiti
    a Leader in the Privacy Management Wave Q4, 2021 Read the Report ### Securiti
    named a Leader in the IDC MarketScape for Data Privacy Compliance Software Read
    the Report At'
  sentences:
  - What recognition did Securiti receive in the field of data privacy?
  - How does the Office of the Privacy Commissioner educate agencies and organisations
    in breach of the law?
  - What is the concept of 'pseudonymised data' introduced by the latest amendment
    to PIPA?
- source_sentence: '18th, 2020, and it has been in effect since then. ## Influence
    of GDPR It is well known that the LGPD was drafted and based on the GDPR, so much
    so that some people call it Brazil’s GDPR. The LGPD contains 65 articles that
    provide individuals with data subject rights, impose obligations upon organizations
    for lawful processing of personal data, require notification of data breaches
    to the supervisory authority and affected data subjects, create a national supervisory
    authority to interpret and enforce the law, regulate international transfer of
    data, define lawful consent collection guidelines and impose heavy penalties on
    violators similar to the GDPR. ## Essence of the LGPD Law LGPD provides: 9 data
    subject rights requests exercisable by individual data subjects; 10 legal bases
    for lawful processing; Obligatory and transparent disclosure requirements for
    organizations to contain within their privacy policy; Consent collection and management
    requirements for organizations;'
  sentences:
  - What are the penalties for misusing personal data and obstructing investigations
    under the PDPA and its amendments?
  - Which data privacy regulation, similar to the GDPR, had a significant impact in
    the US after the promulgation of the GDPR in the EU?
  - What are the requirements for consent collection and management under the LGPD
    law?
- source_sentence: 'to the Privacy Act of 2020. ## Obligations for Organisations Under
    the Privacy Act 2020 Under the Privacy Act’s jurisdiction, all organizations have
    specific responsibilities or obligations towards their users. The most important
    of these obligations include the following: ### 1\. Lawful Purpose Requirements
    While data processing has become immensely important for nearly all businesses,
    the Privacy Act ensures that such data processing can only occur if the organization
    collecting the data has a lawful purpose for the collection and that collection
    of the information is necessary for that purpose. It is also expected that the
    information will be collected directly from the individual concerned. When collecting
    personal information, organizations are required to ensure the individual is aware
    of: The fact that the information is being collected; The purpose for which it
    is being collected; The intended recipients of the information; The details of
    the organization that will be collecting and holding the information; Any laws
    that authorize or'
  sentences:
  - What are the obligations of organizations towards users under the Privacy Act
    of 2020, including lawful purpose and consent requirements?
  - What is the role of the Spanish Data Protection Agency in enforcing data protection
    legislation in Spain and how does it ensure its effectiveness in enforcing the
    law across the country?
  - What is the purpose of Kuwait's Data Privacy Protection Regulation (DPPR)?
- source_sentence: '## Right of Access to Personal Data: What To Know The wealth of
    data available to organizations globally has brought tremendous improvements in
    their ability to target and cater to their customers'' needs. Organizations...
    View More September 13, 2023 ## Kuwait''s DPPR Kuwait didn’t have any data protection
    law until the Communication and Information Technology Regulatory Authority (CITRA)
    introduced the Data Privacy Protection Regulation (DPPR). The... ## Take a Product
    Tour See how easy it is to manage privacy compliance with robotic automation.
    Watch a demo At Securiti, our mission is to enable enterprises to safely harness
    the incredible power of data and the cloud by controlling the complex security,
    privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap
    #### Newsletter #### Company About Us ,  Personal Data: What To Know The wealth
    of data available to organizations globally has brought tremendous improvements
    in their ability to target and cater to their customers'' needs. Organizations...
    View More September 13, 2023 ## Kuwait''s DPPR Kuwait didn’t have any data protection
    law until the Communication and Information Technology Regulatory Authority (CITRA)
    introduced the Data Privacy Protection Regulation (DPPR). The... ## Take a Product
    Tour See how easy it is to manage privacy compliance with robotic automation.
    Watch a demo At Securiti, our mission is to enable enterprises to safely harness
    the incredible power of data and the cloud by controlling the complex security,
    privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap
    #### Newsletter #### Company About Us Careers Contact Us'
  sentences:
  - What is the definition of personal data according to the PDPO?
  - What are the requirements for organizations to notify the regulatory authority
    in case of a data breach according to the PDPL and accompanying Regulations?
  - Why did CITRA introduce Kuwait's DPPR?
- source_sentence: View Salesforce View Workday View GCP View Azure View Oracle View
    Learn more Regulations Automate compliance with global privacy regulations. US
    California CCPA View US California CPRA View European Union GDPR View Thailand’s
    PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \+ More View Learn
    more Roles Identify data risk and enable protection & control. Privacy View Security
    View Governance View Marketing View Resources Blog Read through our articles written
    by industry experts Collateral Product broch
  sentences:
  - What resources are available for learning more about GCP?
  - What are the penalties for unauthorized personal data transfer, including maximum
    fines for data fiduciaries in various scenarios?
  - What are the key provisions of South Korea's data privacy law?
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.32989690721649484
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5670103092783505
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6391752577319587
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7216494845360825
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.32989690721649484
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18900343642611683
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12783505154639174
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07216494845360824
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.32989690721649484
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5670103092783505
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6391752577319587
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7216494845360825
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.518805689291338
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4544509900180003
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4661116752052667
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.3402061855670103
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5773195876288659
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6391752577319587
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.711340206185567
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3402061855670103
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1924398625429553
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12783505154639174
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0711340206185567
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3402061855670103
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5773195876288659
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6391752577319587
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.711340206185567
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5235302122076325
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.46329569628538714
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4750840411397005
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.27835051546391754
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5154639175257731
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5979381443298969
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7010309278350515
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.27835051546391754
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.17182130584192437
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11958762886597937
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07010309278350514
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.27835051546391754
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5154639175257731
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5979381443298969
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7010309278350515
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4836619509866766
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4146457208312879
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.42661551290292493
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.31958762886597936
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4948453608247423
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5979381443298969
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6804123711340206
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.31958762886597936
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16494845360824742
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11958762886597937
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06804123711340206
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.31958762886597936
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4948453608247423
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5979381443298969
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6804123711340206
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.48488869988900546
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.42372361315660284
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4348164067654526
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.25773195876288657
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4742268041237113
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5670103092783505
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6494845360824743
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.25773195876288657
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15807560137457044
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1134020618556701
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06494845360824741
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.25773195876288657
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4742268041237113
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5670103092783505
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6494845360824743
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4465366767058729
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.382228767795778
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.39411615598959504
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v13")
# Run inference
sentences = [
    "View Salesforce View Workday View GCP View Azure View Oracle View Learn more Regulations Automate compliance with global privacy regulations. US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \\+ More View Learn more Roles Identify data risk and enable protection & control. Privacy View Security View Governance View Marketing View Resources Blog Read through our articles written by industry experts Collateral Product broch",
    'What resources are available for learning more about GCP?',
    "What are the key provisions of South Korea's data privacy law?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3299     |
| cosine_accuracy@3   | 0.567      |
| cosine_accuracy@5   | 0.6392     |
| cosine_accuracy@10  | 0.7216     |
| cosine_precision@1  | 0.3299     |
| cosine_precision@3  | 0.189      |
| cosine_precision@5  | 0.1278     |
| cosine_precision@10 | 0.0722     |
| cosine_recall@1     | 0.3299     |
| cosine_recall@3     | 0.567      |
| cosine_recall@5     | 0.6392     |
| cosine_recall@10    | 0.7216     |
| cosine_ndcg@10      | 0.5188     |
| cosine_mrr@10       | 0.4545     |
| **cosine_map@100**  | **0.4661** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3402     |
| cosine_accuracy@3   | 0.5773     |
| cosine_accuracy@5   | 0.6392     |
| cosine_accuracy@10  | 0.7113     |
| cosine_precision@1  | 0.3402     |
| cosine_precision@3  | 0.1924     |
| cosine_precision@5  | 0.1278     |
| cosine_precision@10 | 0.0711     |
| cosine_recall@1     | 0.3402     |
| cosine_recall@3     | 0.5773     |
| cosine_recall@5     | 0.6392     |
| cosine_recall@10    | 0.7113     |
| cosine_ndcg@10      | 0.5235     |
| cosine_mrr@10       | 0.4633     |
| **cosine_map@100**  | **0.4751** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2784     |
| cosine_accuracy@3   | 0.5155     |
| cosine_accuracy@5   | 0.5979     |
| cosine_accuracy@10  | 0.701      |
| cosine_precision@1  | 0.2784     |
| cosine_precision@3  | 0.1718     |
| cosine_precision@5  | 0.1196     |
| cosine_precision@10 | 0.0701     |
| cosine_recall@1     | 0.2784     |
| cosine_recall@3     | 0.5155     |
| cosine_recall@5     | 0.5979     |
| cosine_recall@10    | 0.701      |
| cosine_ndcg@10      | 0.4837     |
| cosine_mrr@10       | 0.4146     |
| **cosine_map@100**  | **0.4266** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3196     |
| cosine_accuracy@3   | 0.4948     |
| cosine_accuracy@5   | 0.5979     |
| cosine_accuracy@10  | 0.6804     |
| cosine_precision@1  | 0.3196     |
| cosine_precision@3  | 0.1649     |
| cosine_precision@5  | 0.1196     |
| cosine_precision@10 | 0.068      |
| cosine_recall@1     | 0.3196     |
| cosine_recall@3     | 0.4948     |
| cosine_recall@5     | 0.5979     |
| cosine_recall@10    | 0.6804     |
| cosine_ndcg@10      | 0.4849     |
| cosine_mrr@10       | 0.4237     |
| **cosine_map@100**  | **0.4348** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2577     |
| cosine_accuracy@3   | 0.4742     |
| cosine_accuracy@5   | 0.567      |
| cosine_accuracy@10  | 0.6495     |
| cosine_precision@1  | 0.2577     |
| cosine_precision@3  | 0.1581     |
| cosine_precision@5  | 0.1134     |
| cosine_precision@10 | 0.0649     |
| cosine_recall@1     | 0.2577     |
| cosine_recall@3     | 0.4742     |
| cosine_recall@5     | 0.567      |
| cosine_recall@10    | 0.6495     |
| cosine_ndcg@10      | 0.4465     |
| cosine_mrr@10       | 0.3822     |
| **cosine_map@100**  | **0.3941** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 872 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                             | anchor                                                                             |
  |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                             |
  | details | <ul><li>min: 89 tokens</li><li>mean: 229.38 tokens</li><li>max: 414 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 21.92 tokens</li><li>max: 102 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anchor                                                                                                  |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
  | <code>controller should inform the data subject in every situation where his or her personal data is processed. The LPPD provides a general requirement to provide information on the collection methods but does not explicitly refer to automated decision-making or profiling. vs Articles: 5 14, Recitals: 58 63 This right requires the controller to provide the following information to the data subject when requested. This should be given in a concise, transparent, intelligible, and easily accessible form, using plain language: The identity and contact details of the controller, controller’s representative, and DPO, where applicable The purpose and the legal basis of the processing The categories of personal data concerned The recipients of the personal data The appropriate or suitable safeguards and the means to obtain a copy of them or where they have been made available The controller must provide information necessary to ensure fair and transparent processing whether or not the personal</code>                                                         | <code>What information must the controller provide regarding their identity and contact details?</code> |
  | <code>and deletions, and manage all vendor contracts and compliance documents. ## Key Rights Under Ghana’s Data Protection Act 2012 **Right to be Informed** : Data subjects have the right to be informed of the processing of their personal data and the purposes for which the data is processed. **Right to Access:** Data subjects have the right to obtain confirmation whether or not the controller holds personal data about them, access their personal data, and obtain descriptions of data recipients. **Right to Rectification** : Under the right to rectification, data subjects can request the correction of their data. **Right to Erasure:** Data subjects have the right to request the erasure and destruction of the data that is no longer needed by the organization. **Right to Object:** The data subject has the right to prevent the data controller from processing personal data if such processing causes or is likely to cause unwarranted damage or distress to the data</code>                                                                                      | <code>What are the key rights provided to data subjects under Ghana's Data Protection Act 2012?</code>  |
  | <code>aim to protect personal data, they have differences in scope, requirements, and applicability. PDPA applies to Thailand, while GDPR applies to the European Union. The effect of PDPA in Thailand is to regulate how personal data is processed, collected, used, and protected by individuals and organizations in the country. Thailand's PDPA includes provisions related to personal data breach notifications, requiring data controllers to notify the Personal Data Protection Committee (PDPC) of a personal data breach as soon as possible, preferably within 72 hours of becoming aware of it. The principles of PDPA in Thailand include obtaining consent, especially for minors, ensuring data security, issuing timely data breach notifications, designating a data protection officer, conducting data protection impact assessments, maintaining a record of processing activities, and ensuring adequate standards when transferring data across borders. ## Join Our Newsletter Get all the latest information, law updates and more delivered to your inbox ### Share</code> | <code>What is the role of obtaining consent in Thailand's PDPA?</code>                                  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.3571  | 10     | 6.4098        | -                      | -                      | -                      | -                     | -                      |
| 0.7143  | 20     | 4.9339        | -                      | -                      | -                      | -                     | -                      |
| 1.0     | 28     | -             | 0.4266                 | 0.4263                 | 0.4703                 | 0.3934                | 0.4650                 |
| 1.0714  | 30     | 3.7606        | -                      | -                      | -                      | -                     | -                      |
| 1.4286  | 40     | 2.5546        | -                      | -                      | -                      | -                     | -                      |
| 1.7857  | 50     | 3.1845        | -                      | -                      | -                      | -                     | -                      |
| **2.0** | **56** | **-**         | **0.4348**             | **0.4266**             | **0.4751**             | **0.3941**            | **0.4661**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->