Mukundhan32 commited on
Commit
3250f0d
·
verified ·
1 Parent(s): 7bd5bc4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -65
README.md CHANGED
@@ -1,65 +0,0 @@
1
- ---
2
- language: en
3
- tags:
4
- - text-classification
5
- - tensorflow
6
- - roberta
7
- datasets:
8
- - go_emotions
9
- license: mit
10
- ---
11
-
12
- Contributors:
13
- - Rohan Kamath [linkedin.com/in/rohanrkamath](https://www.linkedin.com/in/rohanrkamath/)
14
- - Arpan Ghoshal [linkedin.com/in/arpanghoshal](https://www.linkedin.com/in/arpanghoshal)
15
-
16
- ## What is GoEmotions
17
-
18
- Dataset labelled 58000 Reddit comments with 28 emotions
19
-
20
- - admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise + neutral
21
-
22
-
23
- ## What is RoBERTa
24
-
25
- RoBERTa builds on BERT’s language masking strategy and modifies key hyperparameters in BERT, including removing BERT’s next-sentence pretraining objective, and training with much larger mini-batches and learning rates. RoBERTa was also trained on an order of magnitude more data than BERT, for a longer amount of time. This allows RoBERTa representations to generalize even better to downstream tasks compared to BERT.
26
-
27
-
28
- ## Hyperparameters
29
-
30
- | Parameter | |
31
- | ----------------- | :---: |
32
- | Learning rate | 5e-5 |
33
- | Epochs | 10 |
34
- | Max Seq Length | 50 |
35
- | Batch size | 16 |
36
- | Warmup Proportion | 0.1 |
37
- | Epsilon | 1e-8 |
38
-
39
-
40
- ## Results
41
-
42
- Best Result of `Macro F1` - 49.30%
43
-
44
- ## Usage
45
-
46
- ```python
47
-
48
- from transformers import RobertaTokenizerFast, TFRobertaForSequenceClassification, pipeline
49
-
50
- tokenizer = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
51
- model = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoRoBERTa")
52
-
53
- emotion = pipeline('sentiment-analysis',
54
- model='arpanghoshal/EmoRoBERTa')
55
-
56
- emotion_labels = emotion("Thanks for using it.")
57
- print(emotion_labels)
58
-
59
- ```
60
- Output
61
-
62
- ```
63
- [{'label': 'gratitude', 'score': 0.9964383244514465}]
64
- ```
65
-