P1ayer-1 commited on
Commit
c2b84f6
·
1 Parent(s): 260e217

commit files to HF hub

Browse files
Files changed (5) hide show
  1. README.md +21 -4
  2. all_results.json +15 -0
  3. eval_results.json +10 -0
  4. train_results.json +8 -0
  5. trainer_state.json +370 -0
README.md CHANGED
@@ -1,19 +1,32 @@
1
  ---
2
  tags:
3
  - generated_from_trainer
 
 
4
  metrics:
5
  - accuracy
6
  model-index:
7
- - name: expert-min-pile-instruct
8
- results: []
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
  should probably proofread and complete it, then remove this comment. -->
13
 
14
- # expert-min-pile-instruct
15
 
16
- This model is a fine-tuned version of [P1ayer-1/pythia-deduped-1b-chat-base](https://huggingface.co/P1ayer-1/pythia-deduped-1b-chat-base) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
  - Loss: 6.9437
19
  - Accuracy: 0.2099
@@ -65,3 +78,7 @@ The following hyperparameters were used during training:
65
  - Pytorch 2.0.0+cu117
66
  - Datasets 2.11.0
67
  - Tokenizers 0.13.3
 
 
 
 
 
1
  ---
2
  tags:
3
  - generated_from_trainer
4
+ datasets:
5
+ - pile-instruct/
6
  metrics:
7
  - accuracy
8
  model-index:
9
+ - name: layer_4,5,6,7,8
10
+ results:
11
+ - task:
12
+ type: text-generation
13
+ name: Causal Language Modeling
14
+ dataset:
15
+ name: pile-instruct/
16
+ type: pile-instruct/
17
+ split: None
18
+ metrics:
19
+ - type: accuracy
20
+ value: 0.20994595912408442
21
+ name: Accuracy
22
  ---
23
 
24
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
  should probably proofread and complete it, then remove this comment. -->
26
 
27
+ # layer_4,5,6,7,8
28
 
29
+ This model is a fine-tuned version of [P1ayer-1/pythia-deduped-1b-chat-base](https://huggingface.co/P1ayer-1/pythia-deduped-1b-chat-base) on the pile-instruct/ dataset.
30
  It achieves the following results on the evaluation set:
31
  - Loss: 6.9437
32
  - Accuracy: 0.2099
 
78
  - Pytorch 2.0.0+cu117
79
  - Datasets 2.11.0
80
  - Tokenizers 0.13.3
81
+
82
+
83
+ ## Wandb Report
84
+ https://wandb.ai/ontocord/pythia-1b-deduped-layer-test-min-pile-instruct/runs/6hvfd11h
all_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.08,
3
+ "eval_accuracy": 0.20994595912408442,
4
+ "eval_loss": 6.943708896636963,
5
+ "eval_runtime": 558.0424,
6
+ "eval_samples": 41323,
7
+ "eval_samples_per_second": 74.05,
8
+ "eval_steps_per_second": 1.158,
9
+ "perplexity": 1036.607765076698,
10
+ "train_loss": 7.2976521911621095,
11
+ "train_runtime": 4464.2346,
12
+ "train_samples": 770564,
13
+ "train_samples_per_second": 14.336,
14
+ "train_steps_per_second": 0.224
15
+ }
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.08,
3
+ "eval_accuracy": 0.20994595912408442,
4
+ "eval_loss": 6.943708896636963,
5
+ "eval_runtime": 558.0424,
6
+ "eval_samples": 41323,
7
+ "eval_samples_per_second": 74.05,
8
+ "eval_steps_per_second": 1.158,
9
+ "perplexity": 1036.607765076698
10
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.08,
3
+ "train_loss": 7.2976521911621095,
4
+ "train_runtime": 4464.2346,
5
+ "train_samples": 770564,
6
+ "train_samples_per_second": 14.336,
7
+ "train_steps_per_second": 0.224
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.0830556161169423,
5
+ "global_step": 1000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 9.8e-05,
13
+ "loss": 9.3581,
14
+ "step": 20
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 9.6e-05,
19
+ "loss": 8.7296,
20
+ "step": 40
21
+ },
22
+ {
23
+ "epoch": 0.0,
24
+ "learning_rate": 9.4e-05,
25
+ "loss": 8.4359,
26
+ "step": 60
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 9.200000000000001e-05,
31
+ "loss": 8.1868,
32
+ "step": 80
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 9e-05,
37
+ "loss": 8.0439,
38
+ "step": 100
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 8.800000000000001e-05,
43
+ "loss": 7.889,
44
+ "step": 120
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "learning_rate": 8.6e-05,
49
+ "loss": 7.8065,
50
+ "step": 140
51
+ },
52
+ {
53
+ "epoch": 0.01,
54
+ "learning_rate": 8.4e-05,
55
+ "loss": 7.7108,
56
+ "step": 160
57
+ },
58
+ {
59
+ "epoch": 0.01,
60
+ "learning_rate": 8.2e-05,
61
+ "loss": 7.6158,
62
+ "step": 180
63
+ },
64
+ {
65
+ "epoch": 0.02,
66
+ "learning_rate": 8e-05,
67
+ "loss": 7.6017,
68
+ "step": 200
69
+ },
70
+ {
71
+ "epoch": 0.02,
72
+ "eval_accuracy": 0.16046104828397617,
73
+ "eval_loss": 7.592838764190674,
74
+ "eval_runtime": 555.8913,
75
+ "eval_samples_per_second": 74.336,
76
+ "eval_steps_per_second": 1.162,
77
+ "step": 200
78
+ },
79
+ {
80
+ "epoch": 0.02,
81
+ "learning_rate": 7.800000000000001e-05,
82
+ "loss": 7.5238,
83
+ "step": 220
84
+ },
85
+ {
86
+ "epoch": 0.02,
87
+ "learning_rate": 7.6e-05,
88
+ "loss": 7.5017,
89
+ "step": 240
90
+ },
91
+ {
92
+ "epoch": 0.02,
93
+ "learning_rate": 7.4e-05,
94
+ "loss": 7.4579,
95
+ "step": 260
96
+ },
97
+ {
98
+ "epoch": 0.02,
99
+ "learning_rate": 7.2e-05,
100
+ "loss": 7.4226,
101
+ "step": 280
102
+ },
103
+ {
104
+ "epoch": 0.02,
105
+ "learning_rate": 7e-05,
106
+ "loss": 7.3535,
107
+ "step": 300
108
+ },
109
+ {
110
+ "epoch": 0.03,
111
+ "learning_rate": 6.800000000000001e-05,
112
+ "loss": 7.2976,
113
+ "step": 320
114
+ },
115
+ {
116
+ "epoch": 0.03,
117
+ "learning_rate": 6.6e-05,
118
+ "loss": 7.2663,
119
+ "step": 340
120
+ },
121
+ {
122
+ "epoch": 0.03,
123
+ "learning_rate": 6.400000000000001e-05,
124
+ "loss": 7.2552,
125
+ "step": 360
126
+ },
127
+ {
128
+ "epoch": 0.03,
129
+ "learning_rate": 6.2e-05,
130
+ "loss": 7.2456,
131
+ "step": 380
132
+ },
133
+ {
134
+ "epoch": 0.03,
135
+ "learning_rate": 6e-05,
136
+ "loss": 7.1871,
137
+ "step": 400
138
+ },
139
+ {
140
+ "epoch": 0.03,
141
+ "eval_accuracy": 0.18468276244618254,
142
+ "eval_loss": 7.269036769866943,
143
+ "eval_runtime": 600.1232,
144
+ "eval_samples_per_second": 68.858,
145
+ "eval_steps_per_second": 1.076,
146
+ "step": 400
147
+ },
148
+ {
149
+ "epoch": 0.03,
150
+ "learning_rate": 5.8e-05,
151
+ "loss": 7.2095,
152
+ "step": 420
153
+ },
154
+ {
155
+ "epoch": 0.04,
156
+ "learning_rate": 5.6000000000000006e-05,
157
+ "loss": 7.1898,
158
+ "step": 440
159
+ },
160
+ {
161
+ "epoch": 0.04,
162
+ "learning_rate": 5.4000000000000005e-05,
163
+ "loss": 7.2239,
164
+ "step": 460
165
+ },
166
+ {
167
+ "epoch": 0.04,
168
+ "learning_rate": 5.2000000000000004e-05,
169
+ "loss": 7.1352,
170
+ "step": 480
171
+ },
172
+ {
173
+ "epoch": 0.04,
174
+ "learning_rate": 5e-05,
175
+ "loss": 7.1078,
176
+ "step": 500
177
+ },
178
+ {
179
+ "epoch": 0.04,
180
+ "learning_rate": 4.8e-05,
181
+ "loss": 7.1405,
182
+ "step": 520
183
+ },
184
+ {
185
+ "epoch": 0.04,
186
+ "learning_rate": 4.600000000000001e-05,
187
+ "loss": 7.0754,
188
+ "step": 540
189
+ },
190
+ {
191
+ "epoch": 0.05,
192
+ "learning_rate": 4.4000000000000006e-05,
193
+ "loss": 7.1163,
194
+ "step": 560
195
+ },
196
+ {
197
+ "epoch": 0.05,
198
+ "learning_rate": 4.2e-05,
199
+ "loss": 7.0245,
200
+ "step": 580
201
+ },
202
+ {
203
+ "epoch": 0.05,
204
+ "learning_rate": 4e-05,
205
+ "loss": 7.0356,
206
+ "step": 600
207
+ },
208
+ {
209
+ "epoch": 0.05,
210
+ "eval_accuracy": 0.19801584131276806,
211
+ "eval_loss": 7.089658737182617,
212
+ "eval_runtime": 560.9088,
213
+ "eval_samples_per_second": 73.672,
214
+ "eval_steps_per_second": 1.152,
215
+ "step": 600
216
+ },
217
+ {
218
+ "epoch": 0.05,
219
+ "learning_rate": 3.8e-05,
220
+ "loss": 6.9961,
221
+ "step": 620
222
+ },
223
+ {
224
+ "epoch": 0.05,
225
+ "learning_rate": 3.6e-05,
226
+ "loss": 7.0128,
227
+ "step": 640
228
+ },
229
+ {
230
+ "epoch": 0.05,
231
+ "learning_rate": 3.4000000000000007e-05,
232
+ "loss": 7.0096,
233
+ "step": 660
234
+ },
235
+ {
236
+ "epoch": 0.06,
237
+ "learning_rate": 3.2000000000000005e-05,
238
+ "loss": 7.0045,
239
+ "step": 680
240
+ },
241
+ {
242
+ "epoch": 0.06,
243
+ "learning_rate": 3e-05,
244
+ "loss": 6.9897,
245
+ "step": 700
246
+ },
247
+ {
248
+ "epoch": 0.06,
249
+ "learning_rate": 2.8000000000000003e-05,
250
+ "loss": 6.9639,
251
+ "step": 720
252
+ },
253
+ {
254
+ "epoch": 0.06,
255
+ "learning_rate": 2.6000000000000002e-05,
256
+ "loss": 6.9919,
257
+ "step": 740
258
+ },
259
+ {
260
+ "epoch": 0.06,
261
+ "learning_rate": 2.4e-05,
262
+ "loss": 6.9351,
263
+ "step": 760
264
+ },
265
+ {
266
+ "epoch": 0.06,
267
+ "learning_rate": 2.2000000000000003e-05,
268
+ "loss": 6.8762,
269
+ "step": 780
270
+ },
271
+ {
272
+ "epoch": 0.07,
273
+ "learning_rate": 2e-05,
274
+ "loss": 6.93,
275
+ "step": 800
276
+ },
277
+ {
278
+ "epoch": 0.07,
279
+ "eval_accuracy": 0.20642096323588505,
280
+ "eval_loss": 6.986982822418213,
281
+ "eval_runtime": 551.4842,
282
+ "eval_samples_per_second": 74.931,
283
+ "eval_steps_per_second": 1.171,
284
+ "step": 800
285
+ },
286
+ {
287
+ "epoch": 0.07,
288
+ "learning_rate": 1.8e-05,
289
+ "loss": 6.8942,
290
+ "step": 820
291
+ },
292
+ {
293
+ "epoch": 0.07,
294
+ "learning_rate": 1.6000000000000003e-05,
295
+ "loss": 6.8943,
296
+ "step": 840
297
+ },
298
+ {
299
+ "epoch": 0.07,
300
+ "learning_rate": 1.4000000000000001e-05,
301
+ "loss": 6.9178,
302
+ "step": 860
303
+ },
304
+ {
305
+ "epoch": 0.07,
306
+ "learning_rate": 1.2e-05,
307
+ "loss": 6.9095,
308
+ "step": 880
309
+ },
310
+ {
311
+ "epoch": 0.07,
312
+ "learning_rate": 1e-05,
313
+ "loss": 6.9366,
314
+ "step": 900
315
+ },
316
+ {
317
+ "epoch": 0.08,
318
+ "learning_rate": 8.000000000000001e-06,
319
+ "loss": 6.8991,
320
+ "step": 920
321
+ },
322
+ {
323
+ "epoch": 0.08,
324
+ "learning_rate": 6e-06,
325
+ "loss": 6.8957,
326
+ "step": 940
327
+ },
328
+ {
329
+ "epoch": 0.08,
330
+ "learning_rate": 4.000000000000001e-06,
331
+ "loss": 6.897,
332
+ "step": 960
333
+ },
334
+ {
335
+ "epoch": 0.08,
336
+ "learning_rate": 2.0000000000000003e-06,
337
+ "loss": 6.8716,
338
+ "step": 980
339
+ },
340
+ {
341
+ "epoch": 0.08,
342
+ "learning_rate": 0.0,
343
+ "loss": 6.9089,
344
+ "step": 1000
345
+ },
346
+ {
347
+ "epoch": 0.08,
348
+ "eval_accuracy": 0.20994595912408442,
349
+ "eval_loss": 6.943708896636963,
350
+ "eval_runtime": 590.3839,
351
+ "eval_samples_per_second": 69.993,
352
+ "eval_steps_per_second": 1.094,
353
+ "step": 1000
354
+ },
355
+ {
356
+ "epoch": 0.08,
357
+ "step": 1000,
358
+ "total_flos": 1.7865923100672e+17,
359
+ "train_loss": 7.2976521911621095,
360
+ "train_runtime": 4464.2346,
361
+ "train_samples_per_second": 14.336,
362
+ "train_steps_per_second": 0.224
363
+ }
364
+ ],
365
+ "max_steps": 1000,
366
+ "num_train_epochs": 1,
367
+ "total_flos": 1.7865923100672e+17,
368
+ "trial_name": null,
369
+ "trial_params": null
370
+ }