commit files to HF hub
Browse files- README.md +21 -4
- all_results.json +15 -0
- eval_results.json +10 -0
- train_results.json +8 -0
- trainer_state.json +370 -0
README.md
CHANGED
@@ -1,19 +1,32 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- generated_from_trainer
|
|
|
|
|
4 |
metrics:
|
5 |
- accuracy
|
6 |
model-index:
|
7 |
-
- name:
|
8 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
#
|
15 |
|
16 |
-
This model is a fine-tuned version of [P1ayer-1/pythia-deduped-1b-chat-base](https://huggingface.co/P1ayer-1/pythia-deduped-1b-chat-base) on the
|
17 |
It achieves the following results on the evaluation set:
|
18 |
- Loss: 6.9437
|
19 |
- Accuracy: 0.2099
|
@@ -65,3 +78,7 @@ The following hyperparameters were used during training:
|
|
65 |
- Pytorch 2.0.0+cu117
|
66 |
- Datasets 2.11.0
|
67 |
- Tokenizers 0.13.3
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- pile-instruct/
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
+
- name: layer_4,5,6,7,8
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: text-generation
|
13 |
+
name: Causal Language Modeling
|
14 |
+
dataset:
|
15 |
+
name: pile-instruct/
|
16 |
+
type: pile-instruct/
|
17 |
+
split: None
|
18 |
+
metrics:
|
19 |
+
- type: accuracy
|
20 |
+
value: 0.20994595912408442
|
21 |
+
name: Accuracy
|
22 |
---
|
23 |
|
24 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
25 |
should probably proofread and complete it, then remove this comment. -->
|
26 |
|
27 |
+
# layer_4,5,6,7,8
|
28 |
|
29 |
+
This model is a fine-tuned version of [P1ayer-1/pythia-deduped-1b-chat-base](https://huggingface.co/P1ayer-1/pythia-deduped-1b-chat-base) on the pile-instruct/ dataset.
|
30 |
It achieves the following results on the evaluation set:
|
31 |
- Loss: 6.9437
|
32 |
- Accuracy: 0.2099
|
|
|
78 |
- Pytorch 2.0.0+cu117
|
79 |
- Datasets 2.11.0
|
80 |
- Tokenizers 0.13.3
|
81 |
+
|
82 |
+
|
83 |
+
## Wandb Report
|
84 |
+
https://wandb.ai/ontocord/pythia-1b-deduped-layer-test-min-pile-instruct/runs/6hvfd11h
|
all_results.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.08,
|
3 |
+
"eval_accuracy": 0.20994595912408442,
|
4 |
+
"eval_loss": 6.943708896636963,
|
5 |
+
"eval_runtime": 558.0424,
|
6 |
+
"eval_samples": 41323,
|
7 |
+
"eval_samples_per_second": 74.05,
|
8 |
+
"eval_steps_per_second": 1.158,
|
9 |
+
"perplexity": 1036.607765076698,
|
10 |
+
"train_loss": 7.2976521911621095,
|
11 |
+
"train_runtime": 4464.2346,
|
12 |
+
"train_samples": 770564,
|
13 |
+
"train_samples_per_second": 14.336,
|
14 |
+
"train_steps_per_second": 0.224
|
15 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.08,
|
3 |
+
"eval_accuracy": 0.20994595912408442,
|
4 |
+
"eval_loss": 6.943708896636963,
|
5 |
+
"eval_runtime": 558.0424,
|
6 |
+
"eval_samples": 41323,
|
7 |
+
"eval_samples_per_second": 74.05,
|
8 |
+
"eval_steps_per_second": 1.158,
|
9 |
+
"perplexity": 1036.607765076698
|
10 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.08,
|
3 |
+
"train_loss": 7.2976521911621095,
|
4 |
+
"train_runtime": 4464.2346,
|
5 |
+
"train_samples": 770564,
|
6 |
+
"train_samples_per_second": 14.336,
|
7 |
+
"train_steps_per_second": 0.224
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.0830556161169423,
|
5 |
+
"global_step": 1000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 9.8e-05,
|
13 |
+
"loss": 9.3581,
|
14 |
+
"step": 20
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.0,
|
18 |
+
"learning_rate": 9.6e-05,
|
19 |
+
"loss": 8.7296,
|
20 |
+
"step": 40
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.0,
|
24 |
+
"learning_rate": 9.4e-05,
|
25 |
+
"loss": 8.4359,
|
26 |
+
"step": 60
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.01,
|
30 |
+
"learning_rate": 9.200000000000001e-05,
|
31 |
+
"loss": 8.1868,
|
32 |
+
"step": 80
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.01,
|
36 |
+
"learning_rate": 9e-05,
|
37 |
+
"loss": 8.0439,
|
38 |
+
"step": 100
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.01,
|
42 |
+
"learning_rate": 8.800000000000001e-05,
|
43 |
+
"loss": 7.889,
|
44 |
+
"step": 120
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01,
|
48 |
+
"learning_rate": 8.6e-05,
|
49 |
+
"loss": 7.8065,
|
50 |
+
"step": 140
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.01,
|
54 |
+
"learning_rate": 8.4e-05,
|
55 |
+
"loss": 7.7108,
|
56 |
+
"step": 160
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.01,
|
60 |
+
"learning_rate": 8.2e-05,
|
61 |
+
"loss": 7.6158,
|
62 |
+
"step": 180
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.02,
|
66 |
+
"learning_rate": 8e-05,
|
67 |
+
"loss": 7.6017,
|
68 |
+
"step": 200
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.02,
|
72 |
+
"eval_accuracy": 0.16046104828397617,
|
73 |
+
"eval_loss": 7.592838764190674,
|
74 |
+
"eval_runtime": 555.8913,
|
75 |
+
"eval_samples_per_second": 74.336,
|
76 |
+
"eval_steps_per_second": 1.162,
|
77 |
+
"step": 200
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"epoch": 0.02,
|
81 |
+
"learning_rate": 7.800000000000001e-05,
|
82 |
+
"loss": 7.5238,
|
83 |
+
"step": 220
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.02,
|
87 |
+
"learning_rate": 7.6e-05,
|
88 |
+
"loss": 7.5017,
|
89 |
+
"step": 240
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.02,
|
93 |
+
"learning_rate": 7.4e-05,
|
94 |
+
"loss": 7.4579,
|
95 |
+
"step": 260
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.02,
|
99 |
+
"learning_rate": 7.2e-05,
|
100 |
+
"loss": 7.4226,
|
101 |
+
"step": 280
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.02,
|
105 |
+
"learning_rate": 7e-05,
|
106 |
+
"loss": 7.3535,
|
107 |
+
"step": 300
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.03,
|
111 |
+
"learning_rate": 6.800000000000001e-05,
|
112 |
+
"loss": 7.2976,
|
113 |
+
"step": 320
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.03,
|
117 |
+
"learning_rate": 6.6e-05,
|
118 |
+
"loss": 7.2663,
|
119 |
+
"step": 340
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 0.03,
|
123 |
+
"learning_rate": 6.400000000000001e-05,
|
124 |
+
"loss": 7.2552,
|
125 |
+
"step": 360
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 0.03,
|
129 |
+
"learning_rate": 6.2e-05,
|
130 |
+
"loss": 7.2456,
|
131 |
+
"step": 380
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 0.03,
|
135 |
+
"learning_rate": 6e-05,
|
136 |
+
"loss": 7.1871,
|
137 |
+
"step": 400
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.03,
|
141 |
+
"eval_accuracy": 0.18468276244618254,
|
142 |
+
"eval_loss": 7.269036769866943,
|
143 |
+
"eval_runtime": 600.1232,
|
144 |
+
"eval_samples_per_second": 68.858,
|
145 |
+
"eval_steps_per_second": 1.076,
|
146 |
+
"step": 400
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.03,
|
150 |
+
"learning_rate": 5.8e-05,
|
151 |
+
"loss": 7.2095,
|
152 |
+
"step": 420
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.04,
|
156 |
+
"learning_rate": 5.6000000000000006e-05,
|
157 |
+
"loss": 7.1898,
|
158 |
+
"step": 440
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.04,
|
162 |
+
"learning_rate": 5.4000000000000005e-05,
|
163 |
+
"loss": 7.2239,
|
164 |
+
"step": 460
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.04,
|
168 |
+
"learning_rate": 5.2000000000000004e-05,
|
169 |
+
"loss": 7.1352,
|
170 |
+
"step": 480
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.04,
|
174 |
+
"learning_rate": 5e-05,
|
175 |
+
"loss": 7.1078,
|
176 |
+
"step": 500
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.04,
|
180 |
+
"learning_rate": 4.8e-05,
|
181 |
+
"loss": 7.1405,
|
182 |
+
"step": 520
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.04,
|
186 |
+
"learning_rate": 4.600000000000001e-05,
|
187 |
+
"loss": 7.0754,
|
188 |
+
"step": 540
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.05,
|
192 |
+
"learning_rate": 4.4000000000000006e-05,
|
193 |
+
"loss": 7.1163,
|
194 |
+
"step": 560
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.05,
|
198 |
+
"learning_rate": 4.2e-05,
|
199 |
+
"loss": 7.0245,
|
200 |
+
"step": 580
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.05,
|
204 |
+
"learning_rate": 4e-05,
|
205 |
+
"loss": 7.0356,
|
206 |
+
"step": 600
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.05,
|
210 |
+
"eval_accuracy": 0.19801584131276806,
|
211 |
+
"eval_loss": 7.089658737182617,
|
212 |
+
"eval_runtime": 560.9088,
|
213 |
+
"eval_samples_per_second": 73.672,
|
214 |
+
"eval_steps_per_second": 1.152,
|
215 |
+
"step": 600
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 0.05,
|
219 |
+
"learning_rate": 3.8e-05,
|
220 |
+
"loss": 6.9961,
|
221 |
+
"step": 620
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.05,
|
225 |
+
"learning_rate": 3.6e-05,
|
226 |
+
"loss": 7.0128,
|
227 |
+
"step": 640
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.05,
|
231 |
+
"learning_rate": 3.4000000000000007e-05,
|
232 |
+
"loss": 7.0096,
|
233 |
+
"step": 660
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.06,
|
237 |
+
"learning_rate": 3.2000000000000005e-05,
|
238 |
+
"loss": 7.0045,
|
239 |
+
"step": 680
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.06,
|
243 |
+
"learning_rate": 3e-05,
|
244 |
+
"loss": 6.9897,
|
245 |
+
"step": 700
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 0.06,
|
249 |
+
"learning_rate": 2.8000000000000003e-05,
|
250 |
+
"loss": 6.9639,
|
251 |
+
"step": 720
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.06,
|
255 |
+
"learning_rate": 2.6000000000000002e-05,
|
256 |
+
"loss": 6.9919,
|
257 |
+
"step": 740
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.06,
|
261 |
+
"learning_rate": 2.4e-05,
|
262 |
+
"loss": 6.9351,
|
263 |
+
"step": 760
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.06,
|
267 |
+
"learning_rate": 2.2000000000000003e-05,
|
268 |
+
"loss": 6.8762,
|
269 |
+
"step": 780
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.07,
|
273 |
+
"learning_rate": 2e-05,
|
274 |
+
"loss": 6.93,
|
275 |
+
"step": 800
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.07,
|
279 |
+
"eval_accuracy": 0.20642096323588505,
|
280 |
+
"eval_loss": 6.986982822418213,
|
281 |
+
"eval_runtime": 551.4842,
|
282 |
+
"eval_samples_per_second": 74.931,
|
283 |
+
"eval_steps_per_second": 1.171,
|
284 |
+
"step": 800
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.07,
|
288 |
+
"learning_rate": 1.8e-05,
|
289 |
+
"loss": 6.8942,
|
290 |
+
"step": 820
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.07,
|
294 |
+
"learning_rate": 1.6000000000000003e-05,
|
295 |
+
"loss": 6.8943,
|
296 |
+
"step": 840
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.07,
|
300 |
+
"learning_rate": 1.4000000000000001e-05,
|
301 |
+
"loss": 6.9178,
|
302 |
+
"step": 860
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.07,
|
306 |
+
"learning_rate": 1.2e-05,
|
307 |
+
"loss": 6.9095,
|
308 |
+
"step": 880
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.07,
|
312 |
+
"learning_rate": 1e-05,
|
313 |
+
"loss": 6.9366,
|
314 |
+
"step": 900
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.08,
|
318 |
+
"learning_rate": 8.000000000000001e-06,
|
319 |
+
"loss": 6.8991,
|
320 |
+
"step": 920
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.08,
|
324 |
+
"learning_rate": 6e-06,
|
325 |
+
"loss": 6.8957,
|
326 |
+
"step": 940
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.08,
|
330 |
+
"learning_rate": 4.000000000000001e-06,
|
331 |
+
"loss": 6.897,
|
332 |
+
"step": 960
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.08,
|
336 |
+
"learning_rate": 2.0000000000000003e-06,
|
337 |
+
"loss": 6.8716,
|
338 |
+
"step": 980
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.08,
|
342 |
+
"learning_rate": 0.0,
|
343 |
+
"loss": 6.9089,
|
344 |
+
"step": 1000
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.08,
|
348 |
+
"eval_accuracy": 0.20994595912408442,
|
349 |
+
"eval_loss": 6.943708896636963,
|
350 |
+
"eval_runtime": 590.3839,
|
351 |
+
"eval_samples_per_second": 69.993,
|
352 |
+
"eval_steps_per_second": 1.094,
|
353 |
+
"step": 1000
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.08,
|
357 |
+
"step": 1000,
|
358 |
+
"total_flos": 1.7865923100672e+17,
|
359 |
+
"train_loss": 7.2976521911621095,
|
360 |
+
"train_runtime": 4464.2346,
|
361 |
+
"train_samples_per_second": 14.336,
|
362 |
+
"train_steps_per_second": 0.224
|
363 |
+
}
|
364 |
+
],
|
365 |
+
"max_steps": 1000,
|
366 |
+
"num_train_epochs": 1,
|
367 |
+
"total_flos": 1.7865923100672e+17,
|
368 |
+
"trial_name": null,
|
369 |
+
"trial_params": null
|
370 |
+
}
|