DiffBIR / utils /helpers.py
MultiMatrix's picture
Upload 6 files
c46568a verified
from typing import overload, Tuple, Optional
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
from PIL import Image
from einops import rearrange
from model.cldm import ControlLDM
from model.gaussian_diffusion import Diffusion
from model.bsrnet import RRDBNet
from model.swinir import SwinIR
from model.scunet import SCUNet
from utils.sampler import SpacedSampler
from utils.cond_fn import Guidance
from utils.common import wavelet_decomposition, wavelet_reconstruction, count_vram_usage
def bicubic_resize(img: np.ndarray, scale: float) -> np.ndarray:
pil = Image.fromarray(img)
res = pil.resize(tuple(int(x * scale) for x in pil.size), Image.BICUBIC)
return np.array(res)
def resize_short_edge_to(imgs: torch.Tensor, size: int) -> torch.Tensor:
_, _, h, w = imgs.size()
if h == w:
new_h, new_w = size, size
elif h < w:
new_h, new_w = size, int(w * (size / h))
else:
new_h, new_w = int(h * (size / w)), size
return F.interpolate(imgs, size=(new_h, new_w), mode="bicubic", antialias=True)
def pad_to_multiples_of(imgs: torch.Tensor, multiple: int) -> torch.Tensor:
_, _, h, w = imgs.size()
if h % multiple == 0 and w % multiple == 0:
return imgs.clone()
# get_pad = lambda x: (x // multiple + 1) * multiple - x
get_pad = lambda x: (x // multiple + int(x % multiple != 0)) * multiple - x
ph, pw = get_pad(h), get_pad(w)
return F.pad(imgs, pad=(0, pw, 0, ph), mode="constant", value=0)
class Pipeline:
def __init__(self, stage1_model: nn.Module, cldm: ControlLDM, diffusion: Diffusion, cond_fn: Optional[Guidance], device: str) -> None:
self.stage1_model = stage1_model
self.cldm = cldm
self.diffusion = diffusion
self.cond_fn = cond_fn
self.device = device
self.final_size: Tuple[int] = None
def set_final_size(self, lq: torch.Tensor) -> None:
h, w = lq.shape[2:]
self.final_size = (h, w)
@overload
def run_stage1(self, lq: torch.Tensor) -> torch.Tensor:
...
@count_vram_usage
def run_stage2(
self,
clean: torch.Tensor,
steps: int,
strength: float,
tiled: bool,
tile_size: int,
tile_stride: int,
pos_prompt: str,
neg_prompt: str,
cfg_scale: float,
better_start: float
) -> torch.Tensor:
### preprocess
bs, _, ori_h, ori_w = clean.shape
# pad: ensure that height & width are multiples of 64
pad_clean = pad_to_multiples_of(clean, multiple=64)
h, w = pad_clean.shape[2:]
# prepare conditon
if not tiled:
cond = self.cldm.prepare_condition(pad_clean, [pos_prompt] * bs)
uncond = self.cldm.prepare_condition(pad_clean, [neg_prompt] * bs)
else:
cond = self.cldm.prepare_condition_tiled(pad_clean, [pos_prompt] * bs, tile_size, tile_stride)
uncond = self.cldm.prepare_condition_tiled(pad_clean, [neg_prompt] * bs, tile_size, tile_stride)
if self.cond_fn:
self.cond_fn.load_target(pad_clean * 2 - 1)
old_control_scales = self.cldm.control_scales
self.cldm.control_scales = [strength] * 13
if better_start:
# using noised low frequency part of condition as a better start point of
# reverse sampling, which can prevent our model from generating noise in
# image background.
_, low_freq = wavelet_decomposition(pad_clean)
if not tiled:
x_0 = self.cldm.vae_encode(low_freq)
else:
x_0 = self.cldm.vae_encode_tiled(low_freq, tile_size, tile_stride)
x_T = self.diffusion.q_sample(
x_0,
torch.full((bs, ), self.diffusion.num_timesteps - 1, dtype=torch.long, device=self.device),
torch.randn(x_0.shape, dtype=torch.float32, device=self.device)
)
# print(f"diffusion sqrt_alphas_cumprod: {self.diffusion.sqrt_alphas_cumprod[-1]}")
else:
x_T = torch.randn((bs, 4, h // 8, w // 8), dtype=torch.float32, device=self.device)
### run sampler
sampler = SpacedSampler(self.diffusion.betas)
z = sampler.sample(
model=self.cldm, device=self.device, steps=steps, batch_size=bs, x_size=(4, h // 8, w // 8),
cond=cond, uncond=uncond, cfg_scale=cfg_scale, x_T=x_T, progress=True,
progress_leave=True, cond_fn=self.cond_fn, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride
)
if not tiled:
x = self.cldm.vae_decode(z)
else:
x = self.cldm.vae_decode_tiled(z, tile_size // 8, tile_stride // 8)
### postprocess
self.cldm.control_scales = old_control_scales
sample = x[:, :, :ori_h, :ori_w]
return sample
@torch.no_grad()
def run(
self,
lq: np.ndarray,
steps: int,
strength: float,
tiled: bool,
tile_size: int,
tile_stride: int,
pos_prompt: str,
neg_prompt: str,
cfg_scale: float,
better_start: bool
) -> np.ndarray:
# image to tensor
lq = torch.tensor((lq / 255.).clip(0, 1), dtype=torch.float32, device=self.device)
lq = rearrange(lq, "n h w c -> n c h w").contiguous()
# set pipeline output size
self.set_final_size(lq)
clean = self.run_stage1(lq)
sample = self.run_stage2(
clean, steps, strength, tiled, tile_size, tile_stride,
pos_prompt, neg_prompt, cfg_scale, better_start
)
# colorfix (borrowed from StableSR, thanks for their work)
sample = (sample + 1) / 2
sample = wavelet_reconstruction(sample, clean)
# resize to desired output size
sample = F.interpolate(sample, size=self.final_size, mode="bicubic", antialias=True)
# tensor to image
sample = rearrange(sample * 255., "n c h w -> n h w c")
sample = sample.contiguous().clamp(0, 255).to(torch.uint8).cpu().numpy()
return sample
class BSRNetPipeline(Pipeline):
def __init__(self, bsrnet: RRDBNet, cldm: ControlLDM, diffusion: Diffusion, cond_fn: Optional[Guidance], device: str, upscale: float) -> None:
super().__init__(bsrnet, cldm, diffusion, cond_fn, device)
self.upscale = upscale
def set_final_size(self, lq: torch.Tensor) -> None:
h, w = lq.shape[2:]
self.final_size = (int(h * self.upscale), int(w * self.upscale))
@count_vram_usage
def run_stage1(self, lq: torch.Tensor) -> torch.Tensor:
# NOTE: upscale is always set to 4 in our experiments
clean = self.stage1_model(lq)
# if self.final_size[0] < 512 and self.final_size[1] < 512:
if min(self.final_size) < 512:
clean = resize_short_edge_to(clean, size=512)
else:
clean = F.interpolate(clean, size=self.final_size, mode="bicubic", antialias=True)
return clean
class SwinIRPipeline(Pipeline):
def __init__(self, swinir: SwinIR, cldm: ControlLDM, diffusion: Diffusion, cond_fn: Optional[Guidance], device: str) -> None:
super().__init__(swinir, cldm, diffusion, cond_fn, device)
@count_vram_usage
def run_stage1(self, lq: torch.Tensor) -> torch.Tensor:
# NOTE: lq size is always equal to 512 in our experiments
# resize: ensure the input lq size is as least 512, since SwinIR is trained on 512 resolution
if min(lq.shape[2:]) < 512:
lq = resize_short_edge_to(lq, size=512)
ori_h, ori_w = lq.shape[2:]
# pad: ensure that height & width are multiples of 64
pad_lq = pad_to_multiples_of(lq, multiple=64)
# run
clean = self.stage1_model(pad_lq)
# remove padding
clean = clean[:, :, :ori_h, :ori_w]
return clean
class SCUNetPipeline(Pipeline):
def __init__(self, scunet: SCUNet, cldm: ControlLDM, diffusion: Diffusion, cond_fn: Optional[Guidance], device: str) -> None:
super().__init__(scunet, cldm, diffusion, cond_fn, device)
@count_vram_usage
def run_stage1(self, lq: torch.Tensor) -> torch.Tensor:
clean = self.stage1_model(lq)
if min(clean.shape[2:]) < 512:
clean = resize_short_edge_to(clean, size=512)
return clean