|
--- |
|
license: mit |
|
tags: |
|
- pytorch |
|
- regression |
|
--- |
|
|
|
## Model Description |
|
|
|
`NumAdd-v1.0` is a lightweight feed-forward neural network (FNN) implemented in PyTorch for numerical sum prediction. |
|
**Architecture:** 2-input, 1-output, with two hidden layers (32, 64 neurons) and ReLU activations. |
|
**Parameters:** 2,273 trainable. |
|
|
|
## Evaluation |
|
|
|
Benchmarked on 120,000 samples across five input magnitude ranges. Metrics: MAE, MSE, RMSE, R2. |
|
|
|
| Range (Input Max) | MAE | MSE | RMSE | R2 | |
|
|-------------------|---------|----------|---------|---------| |
|
| 0-50 | 0.003 | 0.000 | 0.004 | 1.000 | |
|
| 51-500 | 0.003 | 0.000 | 0.004 | 1.000 | |
|
| 501-5000 | 0.004 | 0.000 | 0.006 | 1.000 | |
|
| 5001-50000 | 0.016 | 0.003 | 0.050 | 1.000 | |
|
| 50001-500000 | 0.1525 | 0.2377 | 0.4876 | 1.000 | |
|
| 500001-50000000 | 12.947 | 2143.782 | 46.301 | 1.000 | |
|
|
|
## Limitations |
|
|
|
Performance degrades significantly for large magnitude inputs (>50,000), evidenced by increased MAE/MSE, despite maintaining high R2. |