File size: 9,774 Bytes
99d39db
 
 
 
 
 
 
 
 
 
 
 
 
 
a2226f7
99d39db
 
 
 
 
 
8e721c4
99d39db
 
e375def
9b398ff
51d83d5
99d39db
 
 
 
 
 
 
b4d82a4
99d39db
 
 
 
 
7dbd3a1
99d39db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e721c4
99d39db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e721c4
 
 
99d39db
 
 
 
 
 
 
 
 
8e721c4
99d39db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e721c4
99d39db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e721c4
99d39db
 
1b613ab
 
 
 
 
 
 
 
 
895e8c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
language:
- en
- ko
license: cc-by-nc-4.0
tags:
- multimodal
- conversational
- ncsoft
- varco
base_model:
- Qwen/Qwen2.5-14B-Instruct
- google/siglip-so400m-patch14-384
library_name: transformers
pipeline_tag: image-text-to-text
---

# VARCO-VISION-14B

## About the Model

**VARCO-VISION-14B** is a powerful English-Korean Vision-Language Model (VLM). The training pipeline of VARCO-VISION consists of four stages: Feature Alignment Pre-training, Basic Supervised Fine-tuning, Advanced Supervised Fine-tuning, and Preference Optimization. In both multimodal and text-only benchmarks, VARCO-VISION-14B not only surpasses other models of similar size in performance but also achieves scores comparable to those of proprietary models.  The model currently accepts a single image and a text as inputs, generating an output text. It supports grounding, referring as well as OCR (Optical Character Recognition).

- **Developed by:** NC Research, Multimodal Generation Team
- **Technical Report:** [VARCO-VISION: Expanding Frontiers in Korean Vision-Language Models](https://arxiv.org/pdf/2411.19103)
- **Blog(Korean):** [VARCO-VISION Technical Report Summary](https://ncsoft.github.io/ncresearch/95ad8712e60063e9ac97538504ac3eea0ac530af)
- **Demo Page:** *The demo page is no longer available.*
- **Languages:** Korean, English
- **License:** CC BY-NC 4.0
- **Architecture:** VARCO-VISION-14B follows the architecture of [LLaVA-OneVision](https://arxiv.org/abs/2408.03326).
- **Base Model:**
  - **Language Model:** [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)
  - **Vision Encoder:** [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384)
- **Huggingface Version Model:** [NCSOFT/VARCO-VISION-14B-HF](https://huggingface.co/NCSOFT/VARCO-VISION-14B-HF)
- **Korean VLM Benchmarks:**
  - [NCSOFT/K-MMBench](https://huggingface.co/datasets/NCSOFT/K-MMBench)
  - [NCSOFT/K-SEED](https://huggingface.co/datasets/NCSOFT/K-SEED)
  - [NCSOFT/K-MMStar](https://huggingface.co/datasets/NCSOFT/K-MMStar)
  - [NCSOFT/K-DTCBench](https://huggingface.co/datasets/NCSOFT/K-DTCBench)
  - [NCSOFT/K-LLaVA-W](https://huggingface.co/datasets/NCSOFT/K-LLaVA-W)
- **This model is for research purposes only. Commercial use is prohibited.**

## Uses

### Direct Use

To load VARCO-VISION-14B, start by cloning and installing **LLaVA-NeXT**:

```bash
git clone https://github.com/LLaVA-VL/LLaVA-NeXT
cd LLaVA-NeXT
pip install -e ".[train]"
```

After installing **LLaVA-NeXT**, you can load VARCO-VISION-14B using the following code:

```python
import torch
from transformers import AutoTokenizer
from llava.model.language_model.llava_qwen import LlavaQwenForCausalLM
from llava.mm_utils import tokenizer_image_token, process_images

model_name = "NCSOFT/VARCO-VISION-14B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = LlavaQwenForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    attn_implementation="flash_attention_2",
    low_cpu_mem_usage=True,
    device_map="auto"
)

vision_tower = model.get_vision_tower()
image_processor = vision_tower.image_processor
```

Prepare an image and a text input. You need to preprocess the image and tokenize the text. Pass the processed inputs to the model to generate predictions.

```python
import requests
from PIL import Image

# Define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image")
conversation = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Describe this image."},
            {"type": "image"},
        ],
    },
]
prompt = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)

IMAGE_TOKEN_INDEX = -200
EOS_TOKEN = "<|im_end|>"
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).to(model.device)

image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_url, stream=True).raw)
image_tensors = process_images([raw_image], image_processor, model.config)
image_tensors = [image_tensor.half().to(model.device) for image_tensor in image_tensors]
image_sizes = [raw_image.size]

with torch.inference_mode():
    output_ids = model.generate(
        input_ids,
        images=image_tensors,
        image_sizes=image_sizes,
        do_sample=False,
        max_new_tokens=1024,
        use_cache=True,
    )

outputs = tokenizer.batch_decode(output_ids)[0]
if outputs.endswith(EOS_TOKEN):
    outputs = outputs[: -len(EOS_TOKEN)]

outputs = outputs.strip()
print(outputs)
```

### Specialized Features

If a question is based on bounding boxes or require bounding boxes as an output, please include the special tokens in the input text.
 
The following special tokens are used to define specific tasks, inputs, and outputs for the model:

- `<gro>`: Indicates that the model's response should include bounding box information.
- `<ocr>`: Specifies OCR tasks for recognizing text within an image.
- `<char>` and `</char>`: Used to mark a text phrase.
- `<obj>` and `</obj>`: Used to indicate an object.
- `<bbox>` and `</bbox>`: Used to represent a bounding box.
- `<delim>`: Represents multiple location points for a single object or text.

#### Grounding
Grounding refers to a task where the model needs to identify specific locations within an image to provide an appropriate answer. To perform grounding, prepend the special token `<gro>` to the question.

```python
conversation = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "<gro>\nDescribe the image in detail."},
            {"type": "image"},
        ],
    },
]
```

**Expected Output Example:**
```html
The image shows <obj>two cats</obj><bbox>0.521, 0.049, 0.997, 0.783<delim>0.016, 0.108, 0.512, 0.99</bbox> lying on <obj>a pink blanket</obj><bbox>0.002, 0.231, 0.999, 0.999</bbox>. The cat on the left is lying on its side with its head resting on the blanket and its body stretched out. The cat on the right is lying on its back with its paws stretched out and its head turned to the side. Both cats appear relaxed and comfortable. There are also <obj>two remote controls</obj><bbox>0.039, 0.138, 0.283, 0.257<delim>0.508, 0.166, 0.581, 0.295</bbox> placed near the cats, one on each side of them.
```

<img src="assets/grounding.png" alt="Grounding Example" width="400"/>

#### Referring

VARCO-VISION-14B can handle location-specific questions using bounding boxes. To perform referring tasks, make a conversation including the object of interest within `<obj>` and `</obj>` tags. You have to specify its location with `<bbox>` and `</bbox>` tags. This allows the model to understand the context and focus on the object at the specified location. A bbox is represented in a form of (x1, y1, x2, y2). The first two values indicate the top-left position of a bbox, and the latter two values are the bottom-right position.

```python
conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "<obj>์ด ๋ฌผ๊ฑด</obj><bbox>0.039, 0.138, 0.283, 0.257</bbox>์€ ์–ด๋–ป๊ฒŒ ์“ฐ๋Š”๊ฑฐ์•ผ?",
            },
            {"type": "image"},
        ],
    },
]
```

**Expected Output Example:**
```
**์ด ๋ฌผ๊ฑด**์€ ๋ฆฌ๋ชจ์ปจ์œผ๋กœ, ์ฃผ๋กœ ํ…”๋ ˆ๋น„์ „์ด๋‚˜ ๋‹ค๋ฅธ ์ „์ž ๊ธฐ๊ธฐ๋ฅผ ์›๊ฒฉ์œผ๋กœ ์กฐ์ž‘ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋ฒ„ํŠผ์„ ๋ˆ„๋ฅด๋ฉด ์ฑ„๋„ ๋ณ€๊ฒฝ, ๋ณผ๋ฅจ ์กฐ์ ˆ, ์ „์› ์ผœ๊ธฐ/๋„๊ธฐ ๋“ฑ์˜ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฆฌ๋ชจ์ปจ์˜ ๋ฒ„ํŠผ์—๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ์ˆซ์ž, ๋ฉ”๋‰ด, ์„ค์ •, ์žฌ์ƒ/์ผ์‹œ์ •์ง€ ๋“ฑ์˜ ๊ธฐ๋Šฅ์ด ํฌํ•จ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์‚ฌ์šฉ์ž๋Š” ์ด๋ฅผ ํ†ตํ•ด ์†์‰ฝ๊ฒŒ ๊ธฐ๊ธฐ๋ฅผ ์ œ์–ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
```

#### OCR

To perform Optical Character Recognition (OCR), use the `<ocr>` token.

```python
image_file = "./assets/ocr_1.png"
raw_image = Image.open(image_file)

conversation = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "<ocr>"},
            {"type": "image"},
        ],
    },
]
```

**Expected Output Example:**

```
<char>๋ฐฑ๋ฒ”๋กœ</char><bbox>0.172, 0.265, 0.328, 0.34</bbox>
<char>124๋ฒˆ๊ธธ</char><bbox>0.349, 0.265, 0.512, 0.34</bbox>
<char>Baekbeom-ro</char><bbox>0.171, 0.335, 0.432, 0.391</bbox>
<char>124</char><bbox>0.444, 0.34, 0.508, 0.391</bbox>
<char>๋งŒ์ˆ˜์ฃผ๊ณต์•„ํŒŒํŠธ</char><bbox>0.109, 0.528, 0.335, 0.594</bbox>
<char>์‹œํฅ</char><bbox>0.443, 0.516, 0.522, 0.578</bbox>
<char>์‹œ์ฒญ</char><bbox>0.711, 0.521, 0.811, 0.594</bbox>
<char>Mansu</char><bbox>0.103, 0.601, 0.181, 0.647</bbox>
<char>Jugong</char><bbox>0.186, 0.601, 0.273, 0.658</bbox>
<char>Apt</char><bbox>0.281, 0.601, 0.327, 0.651</bbox>
<char>42</char><bbox>0.377, 0.601, 0.416, 0.647</bbox>
<char>Shieung</char><bbox>0.445, 0.578, 0.53, 0.623</bbox>
<char>์ธ์ฒœ๋Œ€๊ณต์›</char><bbox>0.431, 0.623, 0.609, 0.684</bbox>
<char>๋ชจ๋ž˜๋‚ด์‹œ์žฅ์—ญ</char><bbox>0.651, 0.591, 0.873, 0.664</bbox>
<char>IncheonGrand</char><bbox>0.433, 0.684, 0.561, 0.723</bbox>
<char>Park</char><bbox>0.564, 0.684, 0.611, 0.723</bbox>
```

<img src="assets/ocr_2.jpg" alt="OCR Example" width="350"/>

## Citing the Model

If you use VARCO-VISION-14B in your research, please cite the following: 

```bibtex
@misc{ju2024varcovisionexpandingfrontierskorean,
      title={VARCO-VISION: Expanding Frontiers in Korean Vision-Language Models}, 
      author={Jeongho Ju and Daeyoung Kim and SunYoung Park and Youngjune Kim},
      year={2024},
      eprint={2411.19103},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2411.19103}, 
}
```