|
|
|
"""
|
|
Created on Mon Aug 12 11:34:42 2024
|
|
|
|
@author: Pradeep Kumar
|
|
|
|
"""
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
import tensorflow_hub as hub
|
|
import tf_keras as keras
|
|
import pandas as pd
|
|
from tensorflow.keras.models import load_model
|
|
from official.nlp.data import classifier_data_lib
|
|
from official.nlp.tools import tokenization
|
|
import joblib
|
|
|
|
model = load_model('best_model.h5', custom_objects={'KerasLayer': hub.KerasLayer})
|
|
|
|
|
|
vocab_file = model.resolved_object.vocab_file.asset_path.numpy()
|
|
do_lower_case = model.resolved_object.do_lower_case.numpy()
|
|
tokenizer = tokenization.FullTokenizer(vocab_file,do_lower_case)
|
|
|
|
|
|
max_seq_length = 128
|
|
label_list = 424
|
|
dummy_label = 100
|
|
|
|
|
|
|
|
def get_feature_new(text, max_seq_length, tokenizer, dummy_label):
|
|
example = classifier_data_lib.InputExample(guid=None,
|
|
text_a=text.numpy().decode('utf-8'),
|
|
text_b=None,
|
|
label=dummy_label)
|
|
feature = classifier_data_lib.convert_single_example(0, example, label_list, max_seq_length, tokenizer)
|
|
return feature.input_ids, feature.input_mask, feature.segment_ids
|
|
|
|
def get_feature_map_new(text):
|
|
input_ids, input_mask, segment_ids = tf.py_function(
|
|
lambda text: get_feature_new(text, max_seq_length, tokenizer, dummy_label),
|
|
inp=[text],
|
|
Tout=[tf.int32, tf.int32, tf.int32]
|
|
)
|
|
input_ids.set_shape([max_seq_length])
|
|
input_mask.set_shape([max_seq_length])
|
|
segment_ids.set_shape([max_seq_length])
|
|
|
|
x = {'input_word_ids': input_ids,
|
|
'input_mask': input_mask,
|
|
'input_type_ids': segment_ids}
|
|
|
|
return x
|
|
|
|
def preprocess_new_data(texts):
|
|
dataset = tf.data.Dataset.from_tensor_slices((texts,))
|
|
dataset = dataset.map(get_feature_map_new,
|
|
num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
|
dataset = dataset.batch(32, drop_remainder=False)
|
|
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
|
|
|
|
return dataset
|
|
|
|
data = pd.read_csv('data.csv')
|
|
|
|
|
|
label_encoder = joblib.load('label_encoder.joblib')
|
|
|
|
|
|
|
|
sample_example = data['text'].to_list()
|
|
new_data_dataset = preprocess_new_data(sample_example)
|
|
|
|
predictions = model.predict(new_data_dataset)
|
|
|
|
|
|
predicted_classes = [label_list[np.argmax(pred)] for pred in predictions]
|
|
|
|
print(predicted_classes)
|
|
highest_probabilities = [max(instance) for instance in predictions]
|
|
decoded_labels = label_encoder.inverse_transform(predicted_classes)
|
|
|
|
data['prob'] = highest_probabilities
|
|
data['predicted_isco'] = predicted_classes
|
|
|
|
data['target_isco'] =label_encoder.inverse_transform(data.target)
|
|
data['predicted_isco_decoded'] =label_encoder.inverse_transform(data.predicted_isco) |