File size: 2,598 Bytes
69bb499 1e326ab 69bb499 15165fa 1a61029 15165fa 1a61029 15165fa f36bb6f 15165fa 7c76c25 15165fa f36bb6f 1a61029 69bb499 1e326ab 69bb499 7c76c25 69bb499 a87bede |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: other
license_name: tongyi-qianwen
license_link: >-
https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
tags:
- chat
---
# Nxcode-CQ-7B-orpo
## Introduction
Nxcode-CQ-7B-orpo is an ORPO fine-tune of Qwen/CodeQwen1.5-7B-Chat on 100k samples ours datasets.
* Strong code generation capabilities and competitve performance across a series of benchmarks;
* Supporting 92 coding languages
* Excellent performance in text-to-SQL, bug fix, etc.
## [Evalplus](https://github.com/evalplus/evalplus)
| EvalPlus | pass@1 |
| --- | --- |
| HumanEval | 86.0 |
| HumanEval+ | 81.1 |
We use the simple tempale for generate the solution for evalplus:
```python
"Complete the following Python function:\n{prompt}"
```
[Evalplus Leaderboard](https://evalplus.github.io/leaderboard.html)
| Models | HumanEval | HumanEval+|
|------ | ------ | ------ |
| GPT-4-Turbo (April 2024)| 90.2| 86.6|
| GPT-4 (May 2023)| 88.4| 81.17|
| GPT-4-Turbo (Nov 2023)| 85.4| 79.3|
| CodeQwen1.5-7B-Chat| 83.5| 78.7|
| claude-3-opus (Mar 2024)| 82.9| 76.8|
| DeepSeek-Coder-33B-instruct| 81.1| 75.0|
| WizardCoder-33B-V1.1| 79.9| 73.2|
| OpenCodeInterpreter-DS-33B| 79.3| 73.8|
| speechless-codellama-34B-v2.0| 77.4| 72|
| GPT-3.5-Turbo (Nov 2023)| 76.8| 70.7|
| Llama3-70B-instruct| 76.2| 70.7|
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"NTQAI/Nxcode-CQ-7B-orpo",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("NTQAI/Nxcode-CQ-7B-orpo")
prompt = "Write a quicksort algorithm in python"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Contact information
For personal communication related to this project, please contact Nha Nguyen Van ([email protected]).
|