PULI-BERT-Large / README.md
fragata's picture
Update README.md
0293f97
|
raw
history blame
1.47 kB
metadata
language:
  - hu
tags:
  - fill-mask
license: cc-by-nc-4.0
widget:
  - text: Mesélek egy [MASK] az oroszlánról.

PULI BERT-Large

For further details, see our demo site.

  • Hungarian BERT large model (MegatronBERT)
  • Trained with Megatron-DeepSpeed github
  • Dataset: 36.3 billion words
  • Checkpoint: 1 500 000 steps

Limitations

  • max_seq_length = 1024

Citation

If you use this model, please cite the following paper:

@inproceedings {yang-puli,
    title = {Jönnek a nagyok! BERT-Large, GPT-2 és GPT-3 nyelvmodellek magyar nyelvre},
    booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)},
    year = {2023},
    publisher = {Szegedi Tudományegyetem, Informatikai Intézet},
    address = {Szeged, Hungary},
    author = {Yang, Zijian Győző and Dodé, Réka and Ferenczi, Gergő and Héja, Enikő and Jelencsik-Mátyus, Kinga and Kőrös, Ádám and Laki, László János and Ligeti-Nagy, Noémi and Vadász, Noémi and Váradi, Tamás},
    pages = {247--262}
}

Usage

from transformers import BertTokenizer, MegatronBertModel

tokenizer = BertTokenizer.from_pretrained('NYTK/PULI-BERT-Large')
model = MegatronBertModel.from_pretrained('NYTK/PULI-BERT-Large')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt', do_lower_case=False)
output = model(**encoded_input)