A MacBERTh model fine-tuned on SQuAD_v2. Hopefully, this will allow the model to perform well on QA tasks on historical texts. Finetune parameters:

training_args = TrainingArguments(
        output_dir="./results",
        evaluation_strategy="epoch",
        learning_rate=3e-5,
        per_device_train_batch_size=64,
        per_device_eval_batch_size=64,
        num_train_epochs=2,
        weight_decay=0.01,
        lr_scheduler_type=SchedulerType.LINEAR,
        warmup_ratio=0.2
    )

Evaluation metrics on the validation set of SQuAD_v2:

{'exact': 49.49886296639434, 'f1': 53.9199170778635, 'total': 11873, 'HasAns_exact': 60.08771929824562, 'HasAns_f1': 68.94250598270429, 'HasAns_total': 5928, 'NoAns_exact': 38.940285954583686, 'NoAns_f1': 38.940285954583686, 'NoAns_total': 5945, 'best_exact': 50.5095595047587, 'best_exact_thresh': 0.0, 'best_f1': 51.75825524534494, 'best_f1_thresh': 0.0}
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.