ALL_mt5-base_15_spider

This model is a fine-tuned version of google/mt5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.7395
  • Rouge2 Precision: 0.397
  • Rouge2 Recall: 0.2374
  • Rouge2 Fmeasure: 0.2735

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
7.6173 1.0 875 1.8215 0.3407 0.1794 0.2153
0.2111 2.0 1750 3.9411 0.3658 0.2228 0.2572
0.1338 3.0 2625 4.4136 0.3594 0.2184 0.2522
0.105 4.0 3500 4.4853 0.3795 0.2302 0.264
0.0923 5.0 4375 4.4951 0.3768 0.227 0.2606
0.0771 6.0 5250 4.5377 0.3772 0.229 0.263
0.0666 7.0 6125 4.5821 0.3995 0.2366 0.2732
0.0581 8.0 7000 4.7276 0.4024 0.2375 0.2749
0.0541 9.0 7875 4.6743 0.4072 0.2412 0.2789
0.0495 10.0 8750 4.5628 0.3983 0.2387 0.2748
0.0455 11.0 9625 4.5861 0.3942 0.2363 0.2722
0.0428 12.0 10500 4.7071 0.3867 0.2364 0.2712
0.0417 13.0 11375 4.7196 0.3971 0.2375 0.2739
0.0396 14.0 12250 4.7196 0.3956 0.2371 0.2727
0.0381 15.0 13125 4.7395 0.397 0.2374 0.2735

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
38
Safetensors
Model size
582M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NatthawatTung/ALL_mt5-base_15_spider

Base model

google/mt5-base
Finetuned
(169)
this model