LawVinaLlama / train.py
haisonle001's picture
Upload train.py
69ad59f verified
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
model = FastLanguageModel.get_peft_model(
model,
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
prompt_context = """Bạn là một tư vấn viên hữu ích về luật.
### Instruction and Input:
Dựa vào ngữ cảnh/tài liệu sau:
{}
Hãy trả lời câu hỏi: {}
### Câu trả lời:
{}
"""
prompt = """Bạn là một tư vấn viên hữu ích về luật.
### Instruction and Input:
Hãy trả lời câu hỏi: {}
{}
### Câu trả lời:
{}"""
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
instructions = examples["context"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
# Must add EOS_TOKEN, otherwise your generation will go on forever!
if instructions:
text = prompt_context.format(instruction, input, output) + EOS_TOKEN
else:
text = prompt.format(input, output) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
from datasets import load_dataset
dataset = load_dataset("json", data_files="/root/unsloth/train_data.jsonl", split="train")
dataset = dataset.map(formatting_prompts_func, batched = True,)
from trl import SFTTrainer
from transformers import TrainingArguments, DataCollatorForSeq2Seq
from unsloth import is_bfloat16_supported
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=max_seq_length,
dataset_num_proc=16,
packing=False, # Can make training 5x faster for short sequences.
args=TrainingArguments(
per_device_train_batch_size=16,
gradient_accumulation_steps=4,
num_train_epochs=1, # Set this for 1 full training run.
learning_rate=2e-4,
fp16=not is_bfloat16_supported(),
bf16=is_bfloat16_supported(),
logging_steps=1,
optim="adamw_8bit",
weight_decay=0.01,
lr_scheduler_type="linear",
seed=3407,
output_dir="outputs",
report_to="none", # Use this for WandB, etc.
# Save every 1000 steps
save_steps=500,
save_total_limit=3, # Keep only the last 3 checkpoints
),
)
trainer_stats = trainer.train()
model.save_pretrained("lora_model") # Local saving
tokenizer.save_pretrained("lora_model")
model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)
model.save_pretrained_merged("model", tokenizer, save_method = "lora",)