|
--- |
|
license: cc-by-sa-3.0 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- csharp |
|
- mpt |
|
- instruct |
|
- 7b |
|
- llm |
|
- .net |
|
--- |
|
|
|
## Try it |
|
|
|
### C# |
|
Code for [use form .Net CSharp on CPU](https://github.com/NethermindEth/Mpt-Instruct-DotNet-S) that runs on Windows, Mac M and Linux |
|
|
|
### Python |
|
```python |
|
import torch |
|
import transformers |
|
from transformers import AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
device = torch.device("cuda") |
|
model_name = "Nethermind/Mpt-Instruct-DotNet-S" |
|
config = transformers.AutoConfig.from_pretrained(model_name, trust_remote_code=True) |
|
config.init_device = device |
|
config.max_seq_len = 1024 |
|
config.attn_config['attn_impl'] = 'torch' |
|
config.use_cache = False |
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
config=config, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
ignore_mismatched_sizes=True, |
|
# load_in_8bit=True # when low on GPU memory |
|
) |
|
model.eval() |
|
|
|
INSTRUCTION_KEY = "### Instruction:" |
|
RESPONSE_KEY = "### Response:" |
|
PROMPT_FOR_GENERATION_FORMAT = """{system} |
|
{instruction_key} |
|
{instruction} |
|
{response_key} |
|
""".format( |
|
system="{system}", |
|
instruction_key=INSTRUCTION_KEY, |
|
instruction="{instruction}", |
|
response_key=RESPONSE_KEY |
|
) |
|
|
|
def give_answer(instruction="Create a loop over [0, 6, 7 , 77] that prints its contentrs", system="You are an experienced .Net C# developer. Below is an instruction that describes a task. Write a response that completes the request providing detailed explanations with code examples.", ): |
|
question = PROMPT_FOR_GENERATION_FORMAT.format(system=system, instruction=instruction) |
|
input_tokens = tokenizer.encode(question ,return_tensors='pt') |
|
model.generate(input_tokens.to(device), max_new_tokens=min(512, 1024 - input_tokens.shape[1]), do_sample=False, top_k=1, top_p=0.95) |
|
outputs = output_loop(tokenized_question) |
|
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
print(answer[0]) |
|
|
|
``` |
|
|
|
|
|
## Training |
|
Finetuned for CSharp [mosaicml/mpt-7b-instruct](https://huggingface.co/mosaicml/mpt-7b-instruct). Max context length is restricted to 1024 tokens. |
|
|
|
- 'Loss': 0.256045166015625 on 300k CSharp-related records |
|
- 'Loss': 0.095714599609375 on 50k specific short prompts |
|
|
|
## Sources |
|
data contained (most data was around 500 tokens long < 1000, except large code files): |
|
- codeparrot/github-code C# ("mit", "Apache-2.0", "Bsd-3-clause", "Bsd-2-clause", "Cc0-1.0", "Unlicense", "isc") |
|
- raw data Plain .cs files randomly cut at the 60-80% in the instruction, and we ask the network to continue last 40-20% (76k) |
|
- documented static functions 72k |
|
- SO 5q_5answer + 5q_5best (CC BY-SA 4.0) 70k |
|
- Dotnet wiki (30k, rendered out from [github repo](https://github.com/microsoft/dotnet), see also removed, GPT-4 generated short question to each file) |
|
- All NM Static Functions and Tests (from [nethermind client repo](https://github.com/NethermindEth/nethermind) documented and described via GPT-4 (4k) |
|
- GPT-4 questions, GPT-3.5 answers for CSharp: Short Q->Code, Explain Code X > Step-By-Step (35k) |
|
- GPT-4 questions, GPT-3.5 answers for nethermind client interface `IEthRpcModule `: Short Q->Code, Explain Code X -> Step-By-Step (7k) |
|
|
|
## Contents |
|
- HF compatible model |
|
- GGML compatible quantisations (f16, q8, q5) |