|
--- |
|
model-index: |
|
- name: TSLAM-Mini-2B |
|
results: |
|
- task: |
|
type: domain-modeling |
|
dataset: |
|
type: telecom-eval-suite |
|
name: Telecom Internal Benchmark |
|
metrics: |
|
- type: accuracy |
|
value: 88.2 |
|
|
|
- task: |
|
type: open-domain-qa |
|
dataset: |
|
type: bigbench-hard |
|
name: BIG-Bench Hard |
|
metrics: |
|
- type: accuracy |
|
value: 70.4 |
|
|
|
- task: |
|
type: question-answering |
|
dataset: |
|
type: mmlu |
|
name: MMLU |
|
metrics: |
|
- type: accuracy |
|
value: 67.3 |
|
|
|
- task: |
|
type: commonsense-reasoning |
|
dataset: |
|
type: arc |
|
name: ARC Challenge |
|
metrics: |
|
- type: accuracy |
|
value: 83.7 |
|
|
|
- task: |
|
type: boolean-classification |
|
dataset: |
|
type: boolq |
|
name: BoolQ |
|
metrics: |
|
- type: accuracy |
|
value: 81.2 |
|
|
|
- task: |
|
type: question-answering |
|
dataset: |
|
type: gpqa |
|
name: GPQA |
|
metrics: |
|
- type: accuracy |
|
value: 25.2 |
|
|
|
- task: |
|
type: commonsense-reasoning |
|
dataset: |
|
type: hellaswag |
|
name: HellaSwag |
|
metrics: |
|
- type: accuracy |
|
value: 69.1 |
|
|
|
- task: |
|
type: open-book-qa |
|
dataset: |
|
type: openbookqa |
|
name: OpenBookQA |
|
metrics: |
|
- type: accuracy |
|
value: 79.2 |
|
|
|
- task: |
|
type: physical-reasoning |
|
dataset: |
|
type: piqa |
|
name: PIQA |
|
metrics: |
|
- type: accuracy |
|
value: 77.6 |
|
|
|
- task: |
|
type: social-intelligence |
|
dataset: |
|
type: socialiqa |
|
name: Social IQa |
|
metrics: |
|
- type: accuracy |
|
value: 72.5 |
|
|
|
- task: |
|
type: truthfulness |
|
dataset: |
|
type: truthfulqa |
|
name: TruthfulQA |
|
metrics: |
|
- type: accuracy |
|
value: 66.4 |
|
|
|
- task: |
|
type: winograd-schema |
|
dataset: |
|
type: winogrande |
|
name: WinoGrande |
|
metrics: |
|
- type: accuracy |
|
value: 67.0 |
|
|
|
- task: |
|
type: question-answering |
|
dataset: |
|
type: mmlu |
|
name: MMLU (Multilingual) |
|
metrics: |
|
- type: accuracy |
|
value: 49.3 |
|
|
|
- task: |
|
type: mathematical-reasoning |
|
dataset: |
|
type: mgsm |
|
name: MGSM |
|
metrics: |
|
- type: accuracy |
|
value: 63.9 |
|
|
|
- task: |
|
type: mathematical-reasoning |
|
dataset: |
|
type: gsm8k |
|
name: GSM8K |
|
metrics: |
|
- type: accuracy |
|
value: 88.6 |
|
|
|
- task: |
|
type: mathematical-reasoning |
|
dataset: |
|
type: math |
|
name: MATH |
|
metrics: |
|
- type: accuracy |
|
value: 64.0 |
|
|
|
extra_gated_prompt: "Please provide answers to the below questions to gain access to the model" |
|
extra_gated_fields: |
|
Company: text |
|
Full Name: text |
|
Email: text |
|
I want to use this model for: |
|
type: select |
|
options: |
|
- Research |
|
- Education |
|
- Commercial |
|
- label: Other |
|
value: other |
|
--- |
|
|
|
# TSLAM-Mini-2B |
|
|
|
**Base Model**: [`microsoft/Phi-4-mini-instruct`](https://huggingface.co/microsoft/Phi-4-mini-instruct) |
|
**License**: MIT |
|
|
|
## Overview |
|
|
|
**TSLAM-Mini-2B** is a domain-adapted language model fine-tuned on 100,000 telecom-specific examples, designed to emulate the intelligence and conversational expertise of a Telecom Subject Matter Expert (SME). Built on top of the Phi-4-mini-instruct foundation, TSLAM-Mini-2B is optimized for real-time, industry-grade interactions across key telecom scenarios, including: |
|
|
|
- SME-style responses in customer support and internal queries |
|
- Network configuration, diagnostics, and troubleshooting workflows |
|
- Device provisioning and service activation dialogues |
|
- Operational support for field and NOC teams |
|
- Intelligent retrieval and summarization of telecom-specific documentation |
|
|
|
This fine-tuning strategy enables TSLAM-Mini-2B to reason like an SME, offering accurate, context-aware responses that align with real-world telecom operations. |
|
Though this model offers superior performance on Telecom specific usecases, For enterprises requiring specialized capabilities please contact us [email protected] for our enterprise grade commercial models which offers greater capabilities required for production. |
|
|
|
## Key Features |
|
|
|
- **Telecom-Tuned**: Finetuned on domain-specific conversations, logs, and structured dialogues. |
|
- **Instruction-Following**: Retains Phi-4’s compact instruction-tuned behavior while adapting to industry-specific patterns. |
|
- **Real-Time Scenarios**: Performs well in use cases that require contextual understanding of real-world telecom operations. |
|
|
|
## Intended Use |
|
The areas TSLAM-Mini-2B excels in are: |
|
|
|
- **Customer Support Agents** (AI copilots or chatbots) |
|
- **Network Operations Tools** that process commands or log queries |
|
- **Internal Assistants** for engineers and field technicians |
|
- **Telecom Knowledge Graphs & RAG Pipelines** |
|
|
|
## Model Details |
|
|
|
| Property | Value | |
|
|------------------|----------------------------------------| |
|
| Base Model | `microsoft/Phi-4-mini-instruct` | |
|
| Fine-tuning Data | 100k telecom domain examples | |
|
| Training Method | Supervised fine-tuning (SFT) | |
|
| License | MIT | |
|
|
|
|
|
## Benchmarks Results |
|
|
|
| **Benchmark** | **TSLAM-Mini-2B** | Phi-3.5-mini-Ins | Llama-3.2-3B-Ins | Mistral-3B | Qwen2.5-3B-Ins | Qwen2.5-7B-Ins | Mistral-8B-2410 | Llama-3.1-8B-Ins | Llama-3.1-Tulu-3-8B | Gemma2-9B-Ins | GPT-4o-mini-2024-07-18 | |
|
|-------------------------------|-----------------|------------------|------------------|------------|----------------|----------------|------------------|-------------------|----------------------|---------------|-------------------------| |
|
| **Popular aggregated benchmark** | | | | | | | | | | | | |
|
| Arena Hard | 32.8 | 34.4 | 17.0 | 26.9 | 32.0 | 55.5 | 37.3 | 25.7 | 42.7 | 43.7 | 53.7 | |
|
| BigBench Hard (0-shot, CoT) | 70.4 | 63.1 | 55.4 | 51.2 | 56.2 | 72.4 | 53.3 | 63.4 | 55.5 | 65.7 | 80.4 | |
|
| MMLU (5-shot) | 67.3 | 65.5 | 61.8 | 60.8 | 65.0 | 72.6 | 63.0 | 68.1 | 65.0 | 71.3 | 77.2 | |
|
| MMLU-Pro (0-shot, CoT) | 52.8 | 47.4 | 39.2 | 35.3 | 44.7 | 56.2 | 36.6 | 44.0 | 40.9 | 50.1 | 62.8 | |
|
| **Reasoning** | | | | | | | | | | | | |
|
| ARC Challenge (10-shot) | 83.7 | 84.6 | 76.1 | 80.3 | 82.6 | 90.1 | 82.7 | 83.1 | 79.4 | 89.8 | 93.5 | |
|
| BoolQ (2-shot) | 81.2 | 77.7 | 71.4 | 79.4 | 65.4 | 80.0 | 80.5 | 82.8 | 79.3 | 85.7 | 88.7 | |
|
| GPQA (0-shot, CoT) | 25.2 | 26.6 | 24.3 | 24.4 | 23.4 | 30.6 | 26.3 | 26.3 | 29.9 | 39.1 | 41.1 | |
|
| HellaSwag (5-shot) | 69.1 | 72.2 | 77.2 | 74.6 | 74.6 | 80.0 | 73.5 | 72.8 | 80.9 | 87.1 | 88.7 | |
|
| OpenBookQA (10-shot) | 79.2 | 81.2 | 72.6 | 79.8 | 79.3 | 82.6 | 80.2 | 84.8 | 79.8 | 90.0 | 90.0 | |
|
| PIQA (5-shot) | 77.6 | 78.2 | 68.2 | 73.2 | 72.6 | 76.2 | 81.2 | 83.2 | 78.3 | 83.7 | 88.7 | |
|
| Social IQA (5-shot) | 72.5 | 75.1 | 68.3 | 73.9 | 75.3 | 75.3 | 77.6 | 71.8 | 73.4 | 74.7 | 82.9 | |
|
| TruthfulQA (MC2) (10-shot) | 66.4 | 65.2 | 59.2 | 62.9 | 64.3 | 69.4 | 63.0 | 69.2 | 64.1 | 76.6 | 78.2 | |
|
| Winogrande (5-shot) | 67.0 | 72.2 | 53.2 | 59.8 | 63.3 | 71.1 | 63.1 | 64.7 | 65.4 | 74.0 | 76.9 | |
|
| **Multilingual** | | | | | | | | | | | | |
|
| Multilingual MMLU (5-shot) | 49.3 | 51.8 | 48.1 | 46.4 | 55.9 | 64.4 | 53.7 | 56.2 | 54.5 | 63.8 | 72.9 | |
|
| MGSM (0-shot, CoT) | 63.9 | 49.6 | 44.6 | 44.6 | 53.5 | 64.5 | 56.7 | 56.7 | 58.6 | 75.1 | 81.7 | |
|
| **Math** | | | | | | | | | | | | |
|
| GSM8K (8-shot, CoT) | 88.6 | 76.9 | 75.6 | 80.1 | 80.6 | 88.7 | 81.9 | 82.4 | 84.3 | 84.9 | 91.3 | |
|
| MATH (0-shot, CoT) | 64.0 | 49.8 | 46.7 | 41.8 | 61.7 | 60.4 | 41.6 | 47.6 | 46.1 | 51.3 | 70.2 | |
|
| **Telecom (domain-specific)** | **88.2** | 52.1 | 47.6 | 49.3 | 58.0 | 61.5 | 54.9 | 57.3 | 59.0 | 64.1 | 70.3 | |
|
| **Overall** | **63.5** | 60.5 | 56.2 | 56.9 | 60.1 | 67.9 | 60.2 | 62.3 | 60.9 | 65.0 | **75.5** | |
|
|
|
## Example |
|
|
|
```text |
|
**User**: How do I reconfigure a 5G core node remotely? |
|
|
|
**Model**: To reconfigure a 5G core node remotely, ensure you have SSH access enabled and the necessary configuration scripts preloaded. From your NOC terminal, run the secure update command with the node's IP and authentication key... |
|
``` |
|
|
|
## How to Use |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
# Load tokenizer and model |
|
model_name = "NetoAISolutions/TSLAM-Mini-2B" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
# Define the input using the Phi-style chat template |
|
def build_prompt(user_input): |
|
system = "<|system|>\nYou are a helpful assistant.<|end|>\n" |
|
user = f"<|user|>\n{user_input}<|end|>\n" |
|
assistant = "<|assistant|>\n" # Start assistant response |
|
return system + user + assistant |
|
|
|
# Example input |
|
user_query = "How do I activate VoLTE on a user's device?" |
|
prompt = build_prompt(user_query) |
|
|
|
# Tokenize and generate |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=200, |
|
temperature=0.7, |
|
top_p=0.9, |
|
do_sample=True, |
|
eos_token_id=tokenizer.convert_tokens_to_ids("<|end|>") |
|
) |
|
|
|
# Decode output |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(response) |
|
|
|
``` |
|
|
|
## Acknowledgements |
|
|
|
- Built on top of Microsoft’s [Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) |
|
- Data curation and tuning by [NetoAISolutions](https://netoai.ai/) |
|
|
|
--- |