NeverLearn's picture
End of training
be451be verified
metadata
license: mit
base_model: Clinical-AI-Apollo/Medical-NER
tags:
  - generated_from_trainer
datasets:
  - maccrobat_biomedical_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Medical-NER-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: maccrobat_biomedical_ner
          type: maccrobat_biomedical_ner
          config: default
          split: train
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.842486314674201
          - name: Recall
            type: recall
            value: 0.8537938439513243
          - name: F1
            type: f1
            value: 0.8481023908985867
          - name: Accuracy
            type: accuracy
            value: 0.9046288534972525

Medical-NER-finetuned-ner

This model is a fine-tuned version of Clinical-AI-Apollo/Medical-NER on the maccrobat_biomedical_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5635
  • Precision: 0.8425
  • Recall: 0.8538
  • F1: 0.8481
  • Accuracy: 0.9046

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8.26814930103799e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 20 0.3925 0.8364 0.8307 0.8335 0.8912
No log 2.0 40 0.3671 0.8266 0.8529 0.8395 0.8954
No log 3.0 60 0.4077 0.8073 0.8388 0.8227 0.8843
No log 4.0 80 0.3630 0.8531 0.8463 0.8497 0.9045
No log 5.0 100 0.3717 0.8413 0.8484 0.8449 0.9017
No log 6.0 120 0.3721 0.8433 0.8425 0.8429 0.9015
No log 7.0 140 0.3679 0.8553 0.8529 0.8541 0.9069
No log 8.0 160 0.3840 0.8394 0.8504 0.8449 0.9012
No log 9.0 180 0.4124 0.8430 0.8520 0.8475 0.9040
No log 10.0 200 0.4328 0.8358 0.8450 0.8404 0.9004
No log 11.0 220 0.4395 0.8395 0.8552 0.8473 0.9033
No log 12.0 240 0.4490 0.8399 0.8490 0.8444 0.9011
No log 13.0 260 0.4592 0.8411 0.8497 0.8454 0.9027
No log 14.0 280 0.4623 0.8435 0.8525 0.8480 0.9047
No log 15.0 300 0.4858 0.8416 0.8540 0.8478 0.9040
No log 16.0 320 0.4986 0.8393 0.8499 0.8446 0.9019
No log 17.0 340 0.5152 0.8367 0.8474 0.8420 0.9012
No log 18.0 360 0.5138 0.8474 0.8508 0.8491 0.9055
No log 19.0 380 0.5414 0.8384 0.8488 0.8436 0.9015
No log 20.0 400 0.5483 0.8401 0.8508 0.8454 0.9029
No log 21.0 420 0.5465 0.8386 0.8454 0.8420 0.9008
No log 22.0 440 0.5463 0.8410 0.8520 0.8465 0.9034
No log 23.0 460 0.5434 0.8441 0.8545 0.8493 0.9053
No log 24.0 480 0.5516 0.8439 0.8493 0.8466 0.9041
0.1398 25.0 500 0.5618 0.8398 0.8518 0.8458 0.9032
0.1398 26.0 520 0.5583 0.8428 0.8550 0.8489 0.9046
0.1398 27.0 540 0.5632 0.8427 0.8524 0.8475 0.9042
0.1398 28.0 560 0.5674 0.8393 0.8522 0.8457 0.9029
0.1398 29.0 580 0.5625 0.8429 0.8527 0.8478 0.9046
0.1398 30.0 600 0.5635 0.8425 0.8538 0.8481 0.9046

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2