See axolotl config
axolotl version: 0.8.0.dev0
base_model: ./qwq
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: NewEden/32b-mag
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: PocketDoc/Dans-Personamaxx-Logs
type: dan-chat-advanced
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
type: dan-chat-advanced
- path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
type: dan-chat-advanced
- path: anthracite-org/nopm_claude_writing_fixed
type: dan-chat-advanced
- path: anthracite-org/kalo_opus_misc_240827
type: dan-chat-advanced
- path: anthracite-org/kalo_misc_part2
type: dan-chat-advanced
- path: NewEden/Claude-Instruct-5K
type: dan-chat-advanced
- path: NewEden/Claude-Instruct-2.7K
type: dan-chat-advanced
dataset_prepared_path: prepared_data
val_set_size: 0.0
output_dir: ./qwq-mag
sequence_len: 32768
sample_packing: true
pad_to_sequence_len: true
wandb_project: qwq
wandb_entity:
wandb_watch:
wandb_name: mag-attempt-01
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 6e-6
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.02
fsdp:
fsdp_config:
special_tokens:
32b-mag
This model was trained from scratch on the PocketDoc/Dans-Personamaxx-Logs, the anthracite-org/kalo-opus-instruct-22k-no-refusal, the lodrick-the-lafted/kalo-opus-instruct-3k-filtered, the anthracite-org/nopm_claude_writing_fixed, the anthracite-org/kalo_opus_misc_240827, the anthracite-org/kalo_misc_part2, the NewEden/Claude-Instruct-5K and the NewEden/Claude-Instruct-2.7K datasets.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2.0
Training results
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.