Nexesenex's picture
Upload folder using huggingface_hub
233451c verified
---
base_model:
- migtissera/Tess-3-Llama-3.1-70B
- aaditya/Llama3-OpenBioLLM-70B
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Linear DELLA](https://arxiv.org/abs/2406.11617) merge method using [migtissera/Tess-3-Llama-3.1-70B](https://huggingface.co/migtissera/Tess-3-Llama-3.1-70B) as a base.
### Models Merged
The following models were included in the merge:
* [aaditya/Llama3-OpenBioLLM-70B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: della_linear
base_model: migtissera/Tess-3-Llama-3.1-70B
models:
- model: aaditya/Llama3-OpenBioLLM-70B
parameters:
weight:
- filter: q_proj
value: [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
- filter: k_proj
value: [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
- filter: v_proj
value: [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
- filter: o_proj
value: [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
- filter: input_layernorm
value: [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
- filter: up_proj
value: [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
- filter: gate_proj
value: [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
- filter: down_proj
value: [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
- filter: post_attention_layernorm
value: [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
- value: 0
density: 0.5
epsilon: 0.1
lambda: 1.0
- model: migtissera/Tess-3-Llama-3.1-70B
parameters:
weight: 1.0
density:
- filter: q_proj
value: [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1]
- filter: k_proj
value: [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1]
- filter: v_proj
value: [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1]
- filter: o_proj
value: [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1]
- filter: input_layernorm
value: [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1]
- filter: up_proj
value: [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1]
- filter: gate_proj
value: [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1]
- filter: down_proj
value: [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1]
- filter: post_attention_layernorm
value: [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1]
- value: 0.5
epsilon:
- filter: q_proj
value: [0, 0, 0, 0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0,09, 0.08, 0,07, 0.06, 0.05, 0.04, 0, 0, 0, 0]
- filter: k_proj
value: [0, 0, 0, 0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0,09, 0.08, 0,07, 0.06, 0.05, 0.04, 0, 0, 0, 0]
- filter: v_proj
value: [0, 0, 0, 0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0,09, 0.08, 0,07, 0.06, 0.05, 0.04, 0, 0, 0, 0]
- filter: o_proj
value: [0, 0, 0, 0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0,09, 0.08, 0,07, 0.06, 0.05, 0.04, 0, 0, 0, 0]
- filter: input_layernorm
value: [0, 0, 0, 0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0,09, 0.08, 0,07, 0.06, 0.05, 0.04, 0, 0, 0, 0]
- filter: up_proj
value: [0, 0, 0, 0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0,09, 0.08, 0,07, 0.06, 0.05, 0.04, 0, 0, 0, 0]
- filter: gate_proj
value: [0, 0, 0, 0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0,09, 0.08, 0,07, 0.06, 0.05, 0.04, 0, 0, 0, 0]
- filter: down_proj
value: [0, 0, 0, 0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0,09, 0.08, 0,07, 0.06, 0.05, 0.04, 0, 0, 0, 0]
- filter: post_attention_layernorm
value: [0, 0, 0, 0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0,09, 0.08, 0,07, 0.06, 0.05, 0.04, 0, 0, 0, 0]
- value: 0.1
lambda: 1.0
dtype: bfloat16
out_dtype: bfloat16
parameters:
int8_mask: true
normalize: true
rescale: true
filter_wise: false
chat_template: auto
tokenizer:
source: union
```