See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: tiiuae/falcon-rw-1b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b466c29bce702f58_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b466c29bce702f58_train_data.json
type:
field_instruction: title
field_output: context
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/15d8bd9d-f5cf-4943-978c-5a910fbe5ebe
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/b466c29bce702f58_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 8ba4269f-9631-4645-bfad-aefbfe713e11
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: 8ba4269f-9631-4645-bfad-aefbfe713e11
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
15d8bd9d-f5cf-4943-978c-5a910fbe5ebe
This model is a fine-tuned version of tiiuae/falcon-rw-1b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5556
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0005 | 1 | 1.7223 |
6.8989 | 0.0044 | 9 | 1.6909 |
6.6408 | 0.0089 | 18 | 1.6532 |
6.4626 | 0.0133 | 27 | 1.6265 |
6.4787 | 0.0177 | 36 | 1.6048 |
6.3077 | 0.0222 | 45 | 1.5880 |
6.3393 | 0.0266 | 54 | 1.5751 |
6.237 | 0.0310 | 63 | 1.5666 |
6.265 | 0.0355 | 72 | 1.5607 |
6.2559 | 0.0399 | 81 | 1.5572 |
6.2633 | 0.0444 | 90 | 1.5559 |
6.2304 | 0.0488 | 99 | 1.5556 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for Nexspear/15d8bd9d-f5cf-4943-978c-5a910fbe5ebe
Base model
tiiuae/falcon-rw-1b