Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2.5-Math-7B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 13f611d881b4973a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/13f611d881b4973a_train_data.json
  type:
    field_input: sql_context
    field_instruction: sql_prompt
    field_output: sql
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/bff1d449-34cd-4b99-9213-c545e0868007
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/13f611d881b4973a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: ad3761c7-9310-40e3-8e3e-842df6723f73
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: ad3761c7-9310-40e3-8e3e-842df6723f73
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

bff1d449-34cd-4b99-9213-c545e0868007

This model is a fine-tuned version of Qwen/Qwen2.5-Math-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4007

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss
No log 0.0003 1 2.3533
0.9255 0.0115 34 0.8507
0.6164 0.0229 68 0.6072
0.5464 0.0344 102 0.5226
0.5303 0.0459 136 0.4773
0.4675 0.0573 170 0.4462
0.4969 0.0688 204 0.4305
0.4404 0.0802 238 0.4182
0.4251 0.0917 272 0.4096
0.3919 0.1032 306 0.4044
0.4308 0.1146 340 0.4017
0.3743 0.1261 374 0.4007

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Nexspear/bff1d449-34cd-4b99-9213-c545e0868007

Base model

Qwen/Qwen2.5-7B
Adapter
(132)
this model