See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-Math-7B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 13f611d881b4973a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/13f611d881b4973a_train_data.json
type:
field_input: sql_context
field_instruction: sql_prompt
field_output: sql
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/bff1d449-34cd-4b99-9213-c545e0868007
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/13f611d881b4973a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: ad3761c7-9310-40e3-8e3e-842df6723f73
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: ad3761c7-9310-40e3-8e3e-842df6723f73
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
bff1d449-34cd-4b99-9213-c545e0868007
This model is a fine-tuned version of Qwen/Qwen2.5-Math-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4007
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 2.3533 |
0.9255 | 0.0115 | 34 | 0.8507 |
0.6164 | 0.0229 | 68 | 0.6072 |
0.5464 | 0.0344 | 102 | 0.5226 |
0.5303 | 0.0459 | 136 | 0.4773 |
0.4675 | 0.0573 | 170 | 0.4462 |
0.4969 | 0.0688 | 204 | 0.4305 |
0.4404 | 0.0802 | 238 | 0.4182 |
0.4251 | 0.0917 | 272 | 0.4096 |
0.3919 | 0.1032 | 306 | 0.4044 |
0.4308 | 0.1146 | 340 | 0.4017 |
0.3743 | 0.1261 | 374 | 0.4007 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10