|
--- |
|
language: vi |
|
datasets: |
|
- common_voice |
|
- FOSD: https://data.mendeley.com/datasets/k9sxg2twv4/4 |
|
- VIVOS: https://ailab.hcmus.edu.vn/vivos |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Vietnamese by Nhut |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice vi |
|
type: common_voice |
|
args: vi |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 52.48 |
|
--- |
|
# Wav2Vec2-Large-XLSR-53-Vietnamese |
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), [FOSD](https://data.mendeley.com/datasets/k9sxg2twv4/4) and [VIVOS](https://ailab.hcmus.edu.vn/vivos). |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
## Usage |
|
The model can be used directly (without a language model) as follows: |
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
ENCODER = { |
|
"ia ": "iê ", |
|
"ìa ": "iề ", |
|
"ía ": "iế ", |
|
"ỉa ": "iể ", |
|
"ĩa ": "iễ ", |
|
"ịa ": "iệ ", |
|
"ya ": "yê ", |
|
"ỳa ": "yề ", |
|
"ýa ": "yế ", |
|
"ỷa ": "yể ", |
|
"ỹa ": "yễ ", |
|
"ỵa ": "yệ ", |
|
"ua ": "uô ", |
|
"ùa ": "uồ ", |
|
"úa ": "uố ", |
|
"ủa ": "uổ ", |
|
"ũa ": "uỗ ", |
|
"ụa ": "uộ ", |
|
"ưa ": "ươ ", |
|
"ừa ": "ườ ", |
|
"ứa ": "ướ ", |
|
"ửa ": "ưở ", |
|
"ữa ": "ưỡ ", |
|
"ựa ": "ượ ", |
|
"ke": "ce", |
|
"kè": "cè", |
|
"ké": "cé", |
|
"kẻ": "cẻ", |
|
"kẽ": "cẽ", |
|
"kẹ": "cẹ", |
|
"kê": "cê", |
|
"kề": "cề", |
|
"kế": "cế", |
|
"kể": "cể", |
|
"kễ": "cễ", |
|
"kệ": "cệ", |
|
"ki": "ci", |
|
"kì": "cì", |
|
"kí": "cí", |
|
"kỉ": "cỉ", |
|
"kĩ": "cĩ", |
|
"kị": "cị", |
|
"ky": "cy", |
|
"kỳ": "cỳ", |
|
"ký": "cý", |
|
"kỷ": "cỷ", |
|
"kỹ": "cỹ", |
|
"kỵ": "cỵ", |
|
"ghe": "ge", |
|
"ghè": "gè", |
|
"ghé": "gé", |
|
"ghẻ": "gẻ", |
|
"ghẽ": "gẽ", |
|
"ghẹ": "gẹ", |
|
"ghê": "gê", |
|
"ghề": "gề", |
|
"ghế": "gế", |
|
"ghể": "gể", |
|
"ghễ": "gễ", |
|
"ghệ": "gệ", |
|
"ngh": "\x80", |
|
"uyê": "\x96", |
|
"uyề": "\x97", |
|
"uyế": "\x98", |
|
"uyể": "\x99", |
|
"uyễ": "\x9a", |
|
"uyệ": "\x9b", |
|
"ng": "\x81", |
|
"ch": "\x82", |
|
"gh": "\x83", |
|
"nh": "\x84", |
|
"gi": "\x85", |
|
"ph": "\x86", |
|
"kh": "\x87", |
|
"th": "\x88", |
|
"tr": "\x89", |
|
"uy": "\x8a", |
|
"uỳ": "\x8b", |
|
"uý": "\x8c", |
|
"uỷ": "\x8d", |
|
"uỹ": "\x8e", |
|
"uỵ": "\x8f", |
|
"iê": "\x90", |
|
"iề": "\x91", |
|
"iế": "\x92", |
|
"iể": "\x93", |
|
"iễ": "\x94", |
|
"iệ": "\x95", |
|
"uô": "\x9c", |
|
"uồ": "\x9d", |
|
"uố": "\x9e", |
|
"uổ": "\x9f", |
|
"uỗ": "\xa0", |
|
"uộ": "\xa1", |
|
"ươ": "\xa2", |
|
"ườ": "\xa3", |
|
"ướ": "\xa4", |
|
"ưở": "\xa5", |
|
"ưỡ": "\xa6", |
|
"ượ": "\xa7", |
|
} |
|
|
|
def decode_string(x): |
|
for k, v in list(reversed(list(ENCODER.items()))): |
|
x = x.replace(v, k) |
|
return x |
|
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]") |
|
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese") |
|
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese") |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
print("Prediction:", [decode_string(x) for x in processor.batch_decode(predicted_ids)]) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
## Evaluation |
|
The model can be evaluated as follows on the Vietnamese test data of Common Voice. |
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
|
|
ENCODER = { |
|
"ia ": "iê ", |
|
"ìa ": "iề ", |
|
"ía ": "iế ", |
|
"ỉa ": "iể ", |
|
"ĩa ": "iễ ", |
|
"ịa ": "iệ ", |
|
"ya ": "yê ", |
|
"ỳa ": "yề ", |
|
"ýa ": "yế ", |
|
"ỷa ": "yể ", |
|
"ỹa ": "yễ ", |
|
"ỵa ": "yệ ", |
|
"ua ": "uô ", |
|
"ùa ": "uồ ", |
|
"úa ": "uố ", |
|
"ủa ": "uổ ", |
|
"ũa ": "uỗ ", |
|
"ụa ": "uộ ", |
|
"ưa ": "ươ ", |
|
"ừa ": "ườ ", |
|
"ứa ": "ướ ", |
|
"ửa ": "ưở ", |
|
"ữa ": "ưỡ ", |
|
"ựa ": "ượ ", |
|
"ke": "ce", |
|
"kè": "cè", |
|
"ké": "cé", |
|
"kẻ": "cẻ", |
|
"kẽ": "cẽ", |
|
"kẹ": "cẹ", |
|
"kê": "cê", |
|
"kề": "cề", |
|
"kế": "cế", |
|
"kể": "cể", |
|
"kễ": "cễ", |
|
"kệ": "cệ", |
|
"ki": "ci", |
|
"kì": "cì", |
|
"kí": "cí", |
|
"kỉ": "cỉ", |
|
"kĩ": "cĩ", |
|
"kị": "cị", |
|
"ky": "cy", |
|
"kỳ": "cỳ", |
|
"ký": "cý", |
|
"kỷ": "cỷ", |
|
"kỹ": "cỹ", |
|
"kỵ": "cỵ", |
|
"ghe": "ge", |
|
"ghè": "gè", |
|
"ghé": "gé", |
|
"ghẻ": "gẻ", |
|
"ghẽ": "gẽ", |
|
"ghẹ": "gẹ", |
|
"ghê": "gê", |
|
"ghề": "gề", |
|
"ghế": "gế", |
|
"ghể": "gể", |
|
"ghễ": "gễ", |
|
"ghệ": "gệ", |
|
"ngh": "\x80", |
|
"uyê": "\x96", |
|
"uyề": "\x97", |
|
"uyế": "\x98", |
|
"uyể": "\x99", |
|
"uyễ": "\x9a", |
|
"uyệ": "\x9b", |
|
"ng": "\x81", |
|
"ch": "\x82", |
|
"gh": "\x83", |
|
"nh": "\x84", |
|
"gi": "\x85", |
|
"ph": "\x86", |
|
"kh": "\x87", |
|
"th": "\x88", |
|
"tr": "\x89", |
|
"uy": "\x8a", |
|
"uỳ": "\x8b", |
|
"uý": "\x8c", |
|
"uỷ": "\x8d", |
|
"uỹ": "\x8e", |
|
"uỵ": "\x8f", |
|
"iê": "\x90", |
|
"iề": "\x91", |
|
"iế": "\x92", |
|
"iể": "\x93", |
|
"iễ": "\x94", |
|
"iệ": "\x95", |
|
"uô": "\x9c", |
|
"uồ": "\x9d", |
|
"uố": "\x9e", |
|
"uổ": "\x9f", |
|
"uỗ": "\xa0", |
|
"uộ": "\xa1", |
|
"ươ": "\xa2", |
|
"ườ": "\xa3", |
|
"ướ": "\xa4", |
|
"ưở": "\xa5", |
|
"ưỡ": "\xa6", |
|
"ượ": "\xa7", |
|
} |
|
|
|
def decode_string(x): |
|
for k, v in list(reversed(list(ENCODER.items()))): |
|
x = x.replace(v, k) |
|
return x |
|
|
|
test_dataset = load_dataset("common_voice", "vi", split="test") |
|
wer = load_metric("wer") |
|
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese") |
|
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]' |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
# decode_string: We replace the encoded letter with the initial letters |
|
batch["pred_strings"] = [decode_string(x) for x in batch["pred_strings"]] |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
``` |
|
**Test Result**: 49.58 % |
|
## Training |
|
The Common Voice `train`, `validation` and FOSD datasets and VIVOS datasets were used for training as well. |
|
The script used for training can be found [here](https://colab.research.google.com/drive/11pP4uVJj4SYZTzGjlCUtOHywlhYqs0cPx) |