NicholasCorrado's picture
Model save
8703e79 verified
|
raw
history blame
2.36 kB
---
library_name: transformers
base_model: allenai/tulu-2-7b
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: ultrafeedback-binarized-tulu-2-7b-dpo-full
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ultrafeedback-binarized-tulu-2-7b-dpo-full
This model is a fine-tuned version of [allenai/tulu-2-7b](https://huggingface.co/allenai/tulu-2-7b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6640
- Rewards/chosen: 0.0423
- Rewards/rejected: -0.0311
- Rewards/accuracies: 0.6706
- Rewards/margins: 0.0734
- Logps/rejected: -317.2082
- Logps/chosen: -335.1042
- Logits/rejected: -1.2523
- Logits/chosen: -1.1794
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6762 | 0.4184 | 100 | 0.6753 | 0.0546 | 0.0122 | 0.6627 | 0.0424 | -312.8761 | -333.8717 | -1.2638 | -1.1861 |
| 0.6604 | 0.8368 | 200 | 0.6640 | 0.0423 | -0.0311 | 0.6706 | 0.0734 | -317.2082 | -335.1042 | -1.2523 | -1.1794 |
### Framework versions
- Transformers 4.44.1
- Pytorch 2.1.2+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1