merged

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the DARE TIES merge method using NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1 as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

base_model:
  model:
    path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
dtype: bfloat16
merge_method: dare_ties
slices:
- sources:
  - layer_range: [0, 22]
    model:
      model:
        path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
  - layer_range: [0, 22]
    model:
      model:
        path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
    parameters:
      density: 0.55
      weight: 0.55
  - layer_range: [0, 22]
    model:
      model:
        path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1
    parameters:
      density: 0.55
      weight: 0.56
  - layer_range: [0, 22]
    model:
      model:
        path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1
    parameters:
      density: 0.55
      weight: 0.56
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
    GenerationConfig,
    TextIteratorStreamer,
)
import torch

new_model= "NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_all_Cluster_merge_v1"
model = AutoModelForCausalLM.from_pretrained(#f'NickyNicky/{new_model}',
                                             new_model,
                                             device_map="auto",
                                             trust_remote_code=True,
                                             torch_dtype=torch.bfloat16,

                                             low_cpu_mem_usage= True,
                                            #  use_flash_attention_2=False,

                                             )


tokenizer = AutoTokenizer.from_pretrained(new_model,
                                          max_length=2048,
                                          trust_remote_code=True,
                                          use_fast = True,
                                          )

tokenizer.pad_token = tokenizer.eos_token
# tokenizer.padding_side = 'left'
tokenizer.padding_side = 'right'


prompt= """<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
escribe una historia de amor.<|im_end|>
<|im_start|>assistant
"""

inputs = tokenizer.encode(prompt,
                          return_tensors="pt",
                          add_special_tokens=False).cuda()#.to("cuda") # False # True


generation_config = GenerationConfig(
              max_new_tokens=700,
              temperature=0.5,
              top_p=0.9,
              top_k=40,
              repetition_penalty=1.1, #1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper
              do_sample=True,
              pad_token_id=tokenizer.eos_token_id,
              eos_token_id=tokenizer.eos_token_id,
          )
outputs = model.generate(
                         generation_config=generation_config,
                         input_ids=inputs,)
# tokenizer.decode(outputs[0], skip_special_tokens=False) #True
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
Downloads last month
12
Safetensors
Model size
1.1B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_all_Cluster_dare_ties_v1