File size: 4,567 Bytes
52f7980
37536d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66bb2c6
 
 
 
 
 
 
b38cc65
 
243ff43
52f7980
66bb2c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e0930b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243ff43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
language:
  - en
  - es
  - ru
  - zh
  - de
  - fr
  - th
  - ca
  - it
  - ja
  - pl
  - eo
  - eu
  - vi
  - fi
  - hu
  - ar
  - nl
  - da
  - tr
  - ko
  - he
  - id
  - cs
  - bn
  - sv
base_model:
- NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
- NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1
- NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1
tags:
- mergekit
- merge
widget:
- text: "<|im_start|>system\nYou are a helpful AI assistant.<|im_end|>\n<|im_start|>user\npodrias escribir un codigo de ejemplo en Python<|im_end|>\n<|im_start|>assistant\n"
license: apache-2.0
---
# merged

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1](https://huggingface.co/NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1) as a base.

### Models Merged

The following models were included in the merge:
* [NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1](https://huggingface.co/NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1)
* [NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1](https://huggingface.co/NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
base_model:
  model:
    path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
dtype: bfloat16
merge_method: dare_ties
slices:
- sources:
  - layer_range: [0, 22]
    model:
      model:
        path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
  - layer_range: [0, 22]
    model:
      model:
        path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
    parameters:
      density: 0.55
      weight: 0.55
  - layer_range: [0, 22]
    model:
      model:
        path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1
    parameters:
      density: 0.55
      weight: 0.56
  - layer_range: [0, 22]
    model:
      model:
        path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1
    parameters:
      density: 0.55
      weight: 0.56
```



```Python
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
    GenerationConfig,
    TextIteratorStreamer,
)
import torch

new_model= "NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_all_Cluster_merge_v1"
model = AutoModelForCausalLM.from_pretrained(#f'NickyNicky/{new_model}',
                                             new_model,
                                             device_map="auto",
                                             trust_remote_code=True,
                                             torch_dtype=torch.bfloat16,

                                             low_cpu_mem_usage= True,
                                            #  use_flash_attention_2=False,

                                             )


tokenizer = AutoTokenizer.from_pretrained(new_model,
                                          max_length=2048,
                                          trust_remote_code=True,
                                          use_fast = True,
                                          )

tokenizer.pad_token = tokenizer.eos_token
# tokenizer.padding_side = 'left'
tokenizer.padding_side = 'right'


prompt= """<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
escribe una historia de amor.<|im_end|>
<|im_start|>assistant
"""

inputs = tokenizer.encode(prompt,
                          return_tensors="pt",
                          add_special_tokens=False).cuda()#.to("cuda") # False # True


generation_config = GenerationConfig(
              max_new_tokens=700,
              temperature=0.5,
              top_p=0.9,
              top_k=40,
              repetition_penalty=1.1, #1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper
              do_sample=True,
              pad_token_id=tokenizer.eos_token_id,
              eos_token_id=tokenizer.eos_token_id,
          )
outputs = model.generate(
                         generation_config=generation_config,
                         input_ids=inputs,)
# tokenizer.decode(outputs[0], skip_special_tokens=False) #True
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
```