vit

This model is a fine-tuned version of VIT on the Mammogram V1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1157
  • Accuracy: 0.9625
  • Precision: 0.9745
  • Recall: 0.9625
  • F1: 0.9682

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4204 1.0 1112 0.1572 0.9797 0.9740 0.9797 0.9767
0.3987 2.0 2224 0.2308 0.9253 0.9745 0.9253 0.9482
0.2347 3.0 3336 0.1360 0.9516 0.9737 0.9516 0.9622
0.1283 4.0 4448 0.1255 0.9564 0.9743 0.9564 0.9649
0.1304 5.0 5560 0.1157 0.9625 0.9745 0.9625 0.9682

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Examples
Unable to determine this model's library. Check the docs .

Space using Nicole-M/Dataset1-ViT 1