Vit-CBIS

This model is a fine-tuned version of VIT on the CBIS-DDSM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6894
  • Accuracy: 0.6032
  • Precision: 0.6313
  • Recall: 0.6032
  • F1: 0.6083

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.698 1.0 165 0.7030 0.4550 0.5327 0.4550 0.4356
0.692 2.0 330 0.6853 0.5714 0.5532 0.5714 0.5578
0.6999 3.0 495 0.6894 0.6032 0.6313 0.6032 0.6083

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .