wmc_v2_swin-tiny-patch4-window7-224_base_wm811k_cls_contra_learning_1017_all_cls
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0733
- Accuracy: 0.9767
- Precision: 0.8901
- Recall: 0.9041
- F1: 0.8937
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.3022 | 0.1079 | 100 | 0.8643 | 0.6787 | 0.0969 | 0.1188 | 0.1016 |
0.1973 | 0.2158 | 200 | 0.4558 | 0.8645 | 0.5013 | 0.4063 | 0.3734 |
0.1885 | 0.3237 | 300 | 0.2848 | 0.8865 | 0.5775 | 0.5620 | 0.5382 |
0.17 | 0.4316 | 400 | 0.2082 | 0.9122 | 0.7820 | 0.6967 | 0.6702 |
0.1565 | 0.5395 | 500 | 0.1775 | 0.9164 | 0.7701 | 0.7289 | 0.6901 |
0.1251 | 0.6474 | 600 | 0.1820 | 0.9265 | 0.6982 | 0.8022 | 0.6862 |
0.087 | 0.7553 | 700 | 0.1075 | 0.9688 | 0.8296 | 0.8707 | 0.8433 |
0.1474 | 0.8632 | 800 | 0.1504 | 0.9351 | 0.7887 | 0.8037 | 0.7687 |
0.1065 | 0.9711 | 900 | 0.1576 | 0.9262 | 0.8158 | 0.7454 | 0.7077 |
0.1262 | 1.0790 | 1000 | 0.1323 | 0.9475 | 0.8042 | 0.8150 | 0.7552 |
0.1223 | 1.1869 | 1100 | 0.1503 | 0.9340 | 0.7646 | 0.8377 | 0.7605 |
0.1433 | 1.2948 | 1200 | 0.0846 | 0.9739 | 0.8748 | 0.8704 | 0.8688 |
0.11 | 1.4028 | 1300 | 0.1043 | 0.9608 | 0.8525 | 0.8474 | 0.8353 |
0.0907 | 1.5107 | 1400 | 0.0814 | 0.9757 | 0.8717 | 0.8733 | 0.8619 |
0.0951 | 1.6186 | 1500 | 0.0899 | 0.9731 | 0.8459 | 0.9010 | 0.8669 |
0.1085 | 1.7265 | 1600 | 0.1138 | 0.9593 | 0.7984 | 0.8802 | 0.8262 |
0.0883 | 1.8344 | 1700 | 0.0794 | 0.9756 | 0.8803 | 0.8954 | 0.8832 |
0.0835 | 1.9423 | 1800 | 0.0853 | 0.9751 | 0.8444 | 0.9116 | 0.8706 |
0.0907 | 2.0502 | 1900 | 0.0992 | 0.9640 | 0.8266 | 0.8745 | 0.8319 |
0.091 | 2.1581 | 2000 | 0.0729 | 0.9779 | 0.8858 | 0.9061 | 0.8936 |
0.1216 | 2.2660 | 2100 | 0.0802 | 0.9743 | 0.8711 | 0.9100 | 0.8879 |
0.0866 | 2.3739 | 2200 | 0.0853 | 0.9742 | 0.8656 | 0.9099 | 0.8845 |
0.0815 | 2.4818 | 2300 | 0.0799 | 0.9735 | 0.8860 | 0.8924 | 0.8849 |
0.0767 | 2.5897 | 2400 | 0.0643 | 0.9803 | 0.8870 | 0.9182 | 0.9010 |
0.0809 | 2.6976 | 2500 | 0.0720 | 0.9779 | 0.8813 | 0.9173 | 0.8978 |
0.1004 | 2.8055 | 2600 | 0.0731 | 0.9780 | 0.8966 | 0.9072 | 0.8998 |
0.0607 | 2.9134 | 2700 | 0.0733 | 0.9767 | 0.8901 | 0.9041 | 0.8937 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Model tree for Niraya666/wmc_v2_swin-tiny-patch4-window7-224_base_wm811k_cls_contra_learning_1017_all_cls
Base model
microsoft/swin-tiny-patch4-window7-224