BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. Dataset - philschmid/finanical-rag-embedding-dataset
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nishanth7803/bge-base-finetuned-financial")
# Run inference
sentences = [
'Personal Systems net revenue was $35,684 million for the fiscal year 2023.',
'What was the total net revenue for the Personal Systems segment in the fiscal year 2023?',
'What are the revised maximum leverage ratios under the Senior Credit Facilities for the periods specified and in connection with certain material acquisitions?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7071 |
cosine_accuracy@3 | 0.8286 |
cosine_accuracy@5 | 0.8657 |
cosine_accuracy@10 | 0.9043 |
cosine_precision@1 | 0.7071 |
cosine_precision@3 | 0.2762 |
cosine_precision@5 | 0.1731 |
cosine_precision@10 | 0.0904 |
cosine_recall@1 | 0.7071 |
cosine_recall@3 | 0.8286 |
cosine_recall@5 | 0.8657 |
cosine_recall@10 | 0.9043 |
cosine_ndcg@10 | 0.809 |
cosine_mrr@10 | 0.7781 |
cosine_map@100 | 0.7818 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7 |
cosine_accuracy@3 | 0.8357 |
cosine_accuracy@5 | 0.8671 |
cosine_accuracy@10 | 0.9114 |
cosine_precision@1 | 0.7 |
cosine_precision@3 | 0.2786 |
cosine_precision@5 | 0.1734 |
cosine_precision@10 | 0.0911 |
cosine_recall@1 | 0.7 |
cosine_recall@3 | 0.8357 |
cosine_recall@5 | 0.8671 |
cosine_recall@10 | 0.9114 |
cosine_ndcg@10 | 0.8093 |
cosine_mrr@10 | 0.7763 |
cosine_map@100 | 0.7797 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7029 |
cosine_accuracy@3 | 0.8357 |
cosine_accuracy@5 | 0.8629 |
cosine_accuracy@10 | 0.9014 |
cosine_precision@1 | 0.7029 |
cosine_precision@3 | 0.2786 |
cosine_precision@5 | 0.1726 |
cosine_precision@10 | 0.0901 |
cosine_recall@1 | 0.7029 |
cosine_recall@3 | 0.8357 |
cosine_recall@5 | 0.8629 |
cosine_recall@10 | 0.9014 |
cosine_ndcg@10 | 0.8069 |
cosine_mrr@10 | 0.7762 |
cosine_map@100 | 0.7801 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.69 |
cosine_accuracy@3 | 0.8171 |
cosine_accuracy@5 | 0.8457 |
cosine_accuracy@10 | 0.8971 |
cosine_precision@1 | 0.69 |
cosine_precision@3 | 0.2724 |
cosine_precision@5 | 0.1691 |
cosine_precision@10 | 0.0897 |
cosine_recall@1 | 0.69 |
cosine_recall@3 | 0.8171 |
cosine_recall@5 | 0.8457 |
cosine_recall@10 | 0.8971 |
cosine_ndcg@10 | 0.7941 |
cosine_mrr@10 | 0.7612 |
cosine_map@100 | 0.765 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6429 |
cosine_accuracy@3 | 0.7786 |
cosine_accuracy@5 | 0.82 |
cosine_accuracy@10 | 0.86 |
cosine_precision@1 | 0.6429 |
cosine_precision@3 | 0.2595 |
cosine_precision@5 | 0.164 |
cosine_precision@10 | 0.086 |
cosine_recall@1 | 0.6429 |
cosine_recall@3 | 0.7786 |
cosine_recall@5 | 0.82 |
cosine_recall@10 | 0.86 |
cosine_ndcg@10 | 0.7522 |
cosine_mrr@10 | 0.7176 |
cosine_map@100 | 0.7227 |
Training Details
Training Dataset
philschmid/finanical-rag-embedding-dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 46.23 tokens
- max: 289 tokens
- min: 7 tokens
- mean: 20.38 tokens
- max: 41 tokens
- Samples:
positive anchor In addition, most group health plans and issuers of group or individual health insurance coverage are required to disclose personalized pricing information to their participants, beneficiaries, and enrollees through an online consumer tool, by phone, or in paper form, upon request. Cost estimates must be provided in real-time based on cost-sharing information that is accurate at the time of the request.
What are the requirements for health insurers and group health plans in providing cost estimates to consumers?
Gross profit energy generation and storage segment
$ In addition, eBay authenticates eligible luxury and collectible items in five categories through “Authenticity Guarantee”, an independent authentication service available in the United States, the United Kingdom, Germany, Australia and Canada.
What does eBay's Authenticity Guarantee service offer?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5914 | - | - | - | - | - |
0.9746 | 12 | - | 0.7520 | 0.7713 | 0.7706 | 0.6969 | 0.7753 |
1.6244 | 20 | 0.6901 | - | - | - | - | - |
1.9492 | 24 | - | 0.7616 | 0.7821 | 0.7799 | 0.7173 | 0.7795 |
2.4365 | 30 | 0.4967 | - | - | - | - | - |
2.9239 | 36 | - | 0.7643 | 0.7815 | 0.7801 | 0.7219 | 0.7817 |
3.2487 | 40 | 0.3894 | - | - | - | - | - |
3.8985 | 48 | - | 0.765 | 0.7801 | 0.7797 | 0.7227 | 0.7818 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Nishanth7803/bge-base-finetuned-financial
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.707
- Cosine Accuracy@3 on dim 768self-reported0.829
- Cosine Accuracy@5 on dim 768self-reported0.866
- Cosine Accuracy@10 on dim 768self-reported0.904
- Cosine Precision@1 on dim 768self-reported0.707
- Cosine Precision@3 on dim 768self-reported0.276
- Cosine Precision@5 on dim 768self-reported0.173
- Cosine Precision@10 on dim 768self-reported0.090
- Cosine Recall@1 on dim 768self-reported0.707
- Cosine Recall@3 on dim 768self-reported0.829