metadata
license: apache-2.0
library_name: peft
tags:
- axolotl
- dpo
- trl
- dpo
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistral-7b-base-dpo-run
results: []
See axolotl config
axolotl version: 0.4.0
base_model: mistralai/Mistral-7B-v0.1
base_model_ignore_patterns: []
base_model_config: mistralai/Mistral-7B-v0.1
model_revision:
tokenizer_config:
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
tokenizer_use_fast: true
tokenizer_legacy: true
resize_token_embeddings_to_32x: false
is_falcon_derived_model: false
is_llama_derived_model: false
is_mistral_derived_model: true
is_qwen_derived_model: false
model_config:
rope_scaling:
bnb_config_kwargs:
gptq: false
gptq_groupsize:
gptq_model_v1: false
load_in_8bit: false
load_in_4bit: true
fp16: true
lora_on_cpu: false
rl: dpo
datasets:
- path: NobodyExistsOnTheInternet/Fixed-gutenberg-dpo-v0.1
split: train
type: chatml.intel
- path: NobodyExistsOnTheInternet/Fixed-Distilabel-intel-orca-dpo-pairs
split: train
type: chatml.intel
- path: NobodyExistsOnTheInternet/ToxicDPOqa
split: train
type: chatml.intel
- path: NobodyExistsOnTheInternet/system-message-DPO
split: train
type: chatml.intel
- path: NobodyExistsOnTheInternet/alpaca-intel-data-dpo
split: train
type: chatml.intel
- path: NobodyExistsOnTheInternet/ToxicDPOqa
split: train
type: chatml.intel
chat_template: chatml
default_system_message: Generate a preferable answer.
dataset_prepared_path: data/last_run_prepared
push_dataset_to_hub:
dataset_processes:
dataset_keep_in_memory:
hub_model_id: NobodyExistsOnTheInternet/mistral-7b-base-dpo-run
hub_strategy: every_save
hf_use_auth_token: true
val_set_size: 0
dataset_shard_num:
dataset_shard_idx:
sequence_len: 1024
sample_packing: false
eval_sample_packing:
sample_packing_eff_est:
total_num_tokens:
device_map:
max_memory:
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_target_module:
lora_modules_to_save:
- embed_tokens
- lm_head
lora_fan_in_fan_out:
wandb_project: dpo-hermes-2.5
wandb_entity:
wandb_watch:
wandb_name:
wandb_run_id:
wandb_log_model:
mlflow_tracking_uri:
mlflow_experiment_name:
output_dir: ./completed-model
torch_compile: true
gradient_accumulation_steps: 4
micro_batch_size: 1
eval_batch_size:
num_epochs: 2
warmup_steps: 100
warmup_ratio:
learning_rate: 0.000001
lr_quadratic_warmup:
logging_steps:
eval_steps:
evals_per_epoch:
save_strategy: steps
save_steps: 1000
saves_per_epoch:
save_total_limit:
eval_table_size:
eval_max_new_tokens:
eval_causal_lm_metrics:
loss_watchdog_threshold:
loss_watchwatchdog_patience:
train_on_inputs: false
group_by_length: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
lr_scheduler:
optimizer: paged_adamw_8bit
weight_decay: 0.01
adam_beta1: 0.95
adam_beta2: 0.999
adam_epsilon: 0.0000001
neftune_noise_alpha: 5
flash_optimum:
xformers_attention:
flash_attention: true
flash_attn_cross_entropy:
flash_attn_rms_norm:
flash_attn_fuse_qkv:
flash_attn_fuse_mlp:
sdp_attention:
s2_attention:
resume_from_checkpoint:
auto_resume_from_checkpoints: false
local_rank:
tokens:
fsdp:
fsdp_config:
deepspeed:
ddp_timeout:
ddp_bucket_cap_mb:
ddp_broadcast_buffers:
torchdistx_path:
pretraining_dataset:
debug:
seed:
mistral-7b-base-dpo-run
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.95,0.999) and epsilon=1e-07
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 15031
Training results
Framework versions
- PEFT 0.8.2
- Transformers 4.38.0
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0