|
--- |
|
license: cc-by-nc-sa-4.0 |
|
language: |
|
- 'no' |
|
--- |
|
|
|
|
|
# Model Card |
|
|
|
NorGPT-369M-NO-QNLI-peft is trained on top of [NorGPT-369M](https://huggingface.co/NorGLM/NorGPT-369M) model on [NO-QNLI](https://huggingface.co/datasets/NorGLM/NO-QNLI) dataset. |
|
|
|
Data format: |
|
``` |
|
input: {premise}[SEP]{hypothesis} |
|
label: {entailment, not_entailment} -> {1,0} |
|
``` |
|
|
|
## Run the Model |
|
```python |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
torch_device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
source_model_id = "NorGLM/NorGPT-369M" |
|
peft_model_id = "NorGLM/NorGPT-369M-NO-QNLI-peft" |
|
|
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
model = AutoModelForCausalLM.from_pretrained(source_model_id, device_map='balanced') |
|
|
|
tokenizer_max_len = 2048 |
|
tokenizer_config = {'pretrained_model_name_or_path': source_model_id, |
|
'max_len': tokenizer_max_len} |
|
tokenizer = tokenizer = AutoTokenizer.from_pretrained(**tokenizer_config) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
``` |
|
|
|
## Inference Example |
|
Load the model to evaluate on the validation set: |
|
```python |
|
|
|
def getDataSetFromFiles(df): |
|
# convert dataset |
|
df["text"] = df[["premise", "hypothesis"]].apply(lambda x: " [SEP] ".join(x.astype(str)), axis =1) |
|
df = df.drop(["idx", "premise", "hypothesis"], axis=1) |
|
#df['label'] = df['label'].replace({1:'contradiction', -1:'entailment', 0:'neutral'}) |
|
df["label"] = df.label.map({"not_entailment": 0, "entailment": 1}) |
|
return Dataset.from_pandas(df) |
|
|
|
print("--LOADING EVAL DATAS---") |
|
eval_data = load_dataset("NorGLM/NO-QNLI", data_files="val.jsonl") |
|
eval_data = getDataSetFromFiles(eval_data["train"].to_pandas()) |
|
|
|
print("--MAKING PREDICTIONS---") |
|
model.eval() |
|
|
|
y_true = [] |
|
y_pred = [] |
|
count = 0 |
|
|
|
for data in eval_data: |
|
count = count + 1 |
|
if count % 100 == 0: |
|
print(count) |
|
inputs = tokenizer(data['text'], return_tensors="pt").to(torch_device) |
|
|
|
with torch.no_grad(): |
|
logits = model(**inputs).logits |
|
#print(logits) |
|
|
|
predicted_class_id = logits.argmax().item() |
|
|
|
y_true.append(data['label']) |
|
y_pred.append(predicted_class_id) |
|
|
|
print(y_pred) |
|
|
|
print(f"Lenght of true_values: {len(y_true)}") |
|
print(f"Lenght of predicted_values: {len(y_pred)}") |
|
|
|
y_true = np.array(y_true) |
|
y_pred = np.array(y_pred) |
|
|
|
F_score = f1_score(y_true, y_pred, average="macro") |
|
print(f"F1 score: {F_score}") |
|
|
|
accuracy = accuracy_score(y_true, y_pred) |
|
print(f"Accuracy: {accuracy}") |
|
|
|
``` |
|
|
|
## Note |
|
More training details will be released soon! |