NorGLM's picture
Update README.md
f1d1d51 verified
|
raw
history blame
2.45 kB
---
license: cc-by-nc-sa-4.0
language:
- 'no'
---
# Model Card
NorGPT-3B-continue-instruction-peft is trained on top of [NorGPT-3B-continue](https://huggingface.co/NorGLM/NorGPT-3B-continue) model on [NO-Alpaca](https://huggingface.co/datasets/NbAiLab/norwegian-alpaca) dataset.
Prompt format:
```
{instruction} {input} : {output}
```
Inference prompt:
```
{instruction} {input} :
```
## Run the Model
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
source_model_id = "NorGLM/NorGPT-3B-continue"
peft_model_id = "NorGLM/NorGPT-3B-continue-instruction-peft"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(source_model_id, device_map='balanced')
tokenizer_max_len = 2048
tokenizer_config = {'pretrained_model_name_or_path': source_model_id,
'max_len': tokenizer_max_len}
tokenizer = tokenizer = AutoTokenizer.from_pretrained(**tokenizer_config)
tokenizer.pad_token = tokenizer.eos_token
model = PeftModel.from_pretrained(model, peft_model_id)
```
## Inference Example
Load the model to evaluate on the last 20\% of NO-Alpaca dataset:
```python
def merge_columns(example):
if str(example["input"]) == "":
example["text"] = str(example["instruction"]) + " : "
else:
example["text"] = str(example["instruction"]) + " " + str(example["input"]) + " : "
return example
def generate_text(text, max_length=200, do_sample=True, top_p = 0.92, top_k=0):
set_seed(42)
model_inputs = tokenizer(text, return_tensors='pt').to(torch_device)
output = model.generate(**model_inputs, max_new_tokens = max_length, no_repeat_ngram_size=2, pad_token_id=tokenizer.eos_token_id)
return tokenizer.decode(output[0], skip_special_tokens=True)
print("--LOADING EVAL DATAS---")
eval_data = load_dataset("NbAiLab/norwegian-alpaca", split='train[-20%:]')
print("--MAKING PREDICTIONS---")
model.eval()
output_file = <output file name>
with open(output_file, 'w', encoding='utf-8-sig') as file:
generated_text = []
for question in eval_data['text']:
generated_text.append({"generated_text": generate_text(question)})
print({"text_generated": len(generated_text)})
json_lines = [json.dumps(data) for data in generated_text]
json_data = "\n".join(json_lines)
file.write(json_data)
```
## Note
More training details will be released soon!