SetFit

This is a SetFit model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

  • Model Type: SetFit
  • Classification head: a OneVsRestClassifier instance
  • Maximum Sequence Length: 512 tokens
  • Number of Classes: 8 classes

Model Sources

Evaluation

Metrics

Label F1_Micro F1_Macro F1_Weighted Precision Accuracy Recall
all 0.9323 0.3701 0.8821 0.9750 0.9469 0.8931

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("hasAdditionalInformation: AO, hasCreatedDate: 2024-10-08, hasCustomerHomeCountry: United States, hasCustomerID: 30642, hasCustomerName: Station Casinos LLC(Station Casinos), hasCutting: Trim to size, hasElementID: 3555960, hasElementTitle: 211696 - 381\" X 363\" SS FRONTLIT EXTERIOR VINYL SIGN , hasFinishedSizeHeight: 363, hasFinishedSizeWidth: 381, hasFscPaperBeenSpecified: No, hasInternalID: 04b8890a-dc33-4778-ad73-c1f68f68231c, hasMaterialCategory: Plastic, hasMaterialDescription: 13OZ VINYL, hasMaterialRecycledPercentage: 0%, hasMaterialThicknessOrWeight: 13, hasMaterialType: PVC, hasMaterialUnitOfMeasure: Ounces (oz), hasNumberOfVersions: 1, hasPrice: 676.0, hasPrintedSides: Not printed, hasProductCategory: Banners (synthetic), hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered: N/A, hasSupplierName: WestRock Company(Westrock - 14360 - HHGSP), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), ")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 67 110.9875 238

Framework Versions

  • Python: 3.10.16
  • SetFit: 1.1.2
  • Sentence Transformers: 3.4.1
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Datasets: 3.2.0
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
2,679
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Evaluation results