stan-northell commited on
Commit
3afbcf3
·
verified ·
1 Parent(s): 2265b71

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 'hasAdditionalInformation: Large Square - 48" x 48" Daily Fundamentals - Vinyl
9
+ for Concrete, hasCreatedDate: 2024-08-12, hasCustomerHomeCountry: United States,
10
+ hasCustomerID: 38262, hasCustomerName: Architecture Products Group (APG)(Architecture
11
+ Products Group (APG) (USA)), hasCutting: Trim to size, hasElementID: 3448379,
12
+ hasElementTitle: Large Square - 48" x 48" Daily Fundamentals - Vinyl for Concrete,
13
+ hasFinishedSizeHeight: 48, hasFinishedSizeWidth: 48, hasFscPaperBeenSpecified:
14
+ No, hasInternalID: ca0cb75e-c8ba-4447-9a73-2f4f31ac1fde, hasMaterialCategory:
15
+ Paper, hasMaterialDescription: Vinyl for Concrete, hasMaterialRecycledPercentage:
16
+ 0%, hasMaterialType: Paper and board, hasMaterialUnitOfMeasure: Pounds (lbs),
17
+ hasNumberOfVersions: 1, hasPrice: 95.04 USD, hasPrintedSides: Not printed, hasProductCategory:
18
+ Indoor/Outdoor Signage, hasProofType: PDF digital proof, hasQuantity: 2, hasRecycledContentBeenOffered:
19
+ N/A, hasSupplierName: Firehouse Image Center(Firehouse Image Center - 12168 -
20
+ HHGSP), hasUnitOfMeasure: Inches (in), '
21
+ - text: 'hasCreatedDate: 2024-11-20, hasCustomerHomeCountry: United States, hasCustomerID:
22
+ 14347, hasCustomerName: Lowe''s Companies Inc.(Lowe''s USD), hasCutting: Trim
23
+ to size, hasElementID: 3646411, hasElementTitle: RESET00002 PT BRITTEN, hasFinishedSizeHeight:
24
+ 1, hasFinishedSizeWidth: 1, hasFlatSizeHeight: 1, hasFlatSizeWidth: 1, hasFscPaperBeenSpecified:
25
+ No, hasInternalID: 47920581-39d1-4737-aa2e-32fdddebe3c3, hasMaterialCategory:
26
+ Other, hasMaterialDescription: Other, hasMaterialType: Other, hasNumberOfVersions:
27
+ 1, hasPrice: 0 USD, hasPrintedSides: Single sided, hasProofType: No proof required,
28
+ hasQuantity: 1, hasRecycledContentBeenOffered: N/A, hasSupplierName: BRITTEN BANNERS(Britten
29
+ Inc - 38859 - HHGSP), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), '
30
+ - text: 'hasArtworkDoubleSidedStatus: Double Sided Same, hasCreatedDate: 2024-06-21,
31
+ hasCustomerHomeCountry: United Kingdom, hasCustomerID: 37535, hasCustomerName:
32
+ Musgrave Retail Partners NI Ltd. | Centra NI (Musgrave Retail Partners NI Ltd.
33
+ | Centra NI ), hasCutting: Cut to shape, hasElementID: 3360484, hasElementTitle:
34
+ SKU.21 - Indoor Bunting 5m Summer POS , hasFinishedSizeHeight: 297, hasFinishedSizeWidth:
35
+ 210, hasFscPaperBeenSpecified: No, hasInternalID: 62b006eb-1c4e-4d6e-adbf-9ac9543daa86,
36
+ hasMaterialCategory: Paper, hasMaterialDescription: Art, hasMaterialThicknessOrWeight:
37
+ 300, hasMaterialType: Paper, hasMaterialUnitOfMeasure: GSM, hasNumberOfVersions:
38
+ 1, hasPackingRequirements: Indoor Bunting 5m. A4 pennants. 4/4 onto 300grm art.
39
+ Matt Lam and Die Cut to shape., hasPrice: 45 GBP, hasPrintedSides: Double sided,
40
+ hasProofType: PDF digital proof, hasQuantity: 6, hasQuantityPerVersion: 1, hasRecycledContentBeenOffered:
41
+ No, hasSupplierName: McGowans(McGowans), hasTotalColours: 4, hasTotalColoursFace:
42
+ 4, hasUnitOfMeasure: Millimetres (mm), '
43
+ - text: 'hasAdditionalInformation: Title, hasCreatedDate: 2024-08-20, hasCustomerHomeCountry:
44
+ United Kingdom, hasCustomerID: 49021, hasCustomerName: LONDON EYE(MERLIN - EYE
45
+ - LONDON), hasCutting: Trim to size, hasElementID: 3461182, hasElementTitle: 2731
46
+ LE Gift Shop A0 Banners, hasFinishedSizeHeight: 1189, hasFinishedSizeWidth: 841,
47
+ hasFscPaperBeenSpecified: No, hasHandFinishing: Yes, hasHandFinishingDetails:
48
+ hem and eyelet, hasInternalID: b7ec9eab-be07-41d6-b977-191abb1b573f, hasMaterialCategory:
49
+ Plastic, hasMaterialDescription: PVC, hasMaterialThicknessOrWeight: 440, hasMaterialType:
50
+ PVC, hasMaterialUnitOfMeasure: Microns, hasMinimumRecycledContent: 0%, hasNumberOfVersions:
51
+ 1, hasPrice: 50 GBP, hasPrintedSides: Single sided, hasProductCategory: Loose
52
+ Print, hasProofType: PDF digital proof, hasQuantity: 2, hasQuantityPerVersion:
53
+ 2, hasRecycledContentBeenRequested: No, hasSendToDetails: Simona Bottiglia (she/her)
54
+ Senior Retail Manager The London Eye, County Hall, Westminster Bridge Road,
55
+ London, SE1 7PB, hasSupplierName: Design X-Press Limited(Design X-Press Limited),
56
+ hasTotalColours: 4, hasUnitOfMeasure: Millimetres (mm), '
57
+ - text: 'hasArtworkDoubleSidedStatus: Double Sided Different, hasCreatedDate: 2024-09-17,
58
+ hasCustomerHomeCountry: United States, hasCustomerID: 39021, hasCustomerName:
59
+ Pulte Homes Corporation(PulteGroup | Mid-Atlantic - 1038), hasCutting: Trim to
60
+ size, hasElementID: 3512114, hasElementTitle: MidAtlantic - Cattail Run - Bifolds
61
+ 17x11 folded to 8.5x11 (Summerfield) (300 QTY), hasFinishedSizeHeight: 11, hasFinishedSizeWidth:
62
+ 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth: 17, hasFscPaperBeenSpecified: No,
63
+ hasInternalID: 14a905f8-9a6a-4ea9-a0e4-7299704feeb0, hasMachineFinishing: Yes,
64
+ hasMachineFinishingDetails: Half Fold, hasMaterialCategory: Paper, hasMaterialDescription:
65
+ Gloss/Text, Substrate Grade #2, bleached(white), bleed, hasMaterialThicknessOrWeight:
66
+ 80, hasMaterialType: Paper, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions:
67
+ 1, hasPackingRequirements: Shrink wrap in packs of 100 Deliver to, hasPrice:
68
+ 200.68 USD, hasPrintedSides: Double sided, hasProofType: PDF digital proof, hasQuantity:
69
+ 300, hasQuantityPerVersion: 300, hasRecycledContentBeenOffered: N/A, hasSupplierName:
70
+ Team Concept Printing (Team Concept Printing - HHGSP - PI), hasTotalColours:
71
+ 4, hasTotalColoursFace: 4, hasUnitOfMeasure: Inches (in), '
72
+ metrics:
73
+ - f1_micro
74
+ - f1_macro
75
+ - f1_weighted
76
+ - precision
77
+ - accuracy
78
+ - recall
79
+ pipeline_tag: text-classification
80
+ library_name: setfit
81
+ inference: false
82
+ model-index:
83
+ - name: SetFit
84
+ results:
85
+ - task:
86
+ type: text-classification
87
+ name: Text Classification
88
+ dataset:
89
+ name: Unknown
90
+ type: unknown
91
+ split: test
92
+ metrics:
93
+ - type: f1_micro
94
+ value: 0.8504854368932039
95
+ name: F1_Micro
96
+ - type: f1_macro
97
+ value: 0.35725054393071265
98
+ name: F1_Macro
99
+ - type: f1_weighted
100
+ value: 0.7613078250339776
101
+ name: F1_Weighted
102
+ - type: precision
103
+ value: 0.9125000238418579
104
+ name: Precision
105
+ - type: accuracy
106
+ value: 0.879687488079071
107
+ name: Accuracy
108
+ - type: recall
109
+ value: 0.7963636517524719
110
+ name: Recall
111
+ ---
112
+
113
+ # SetFit
114
+
115
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
116
+
117
+ The model has been trained using an efficient few-shot learning technique that involves:
118
+
119
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
120
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
121
+
122
+ ## Model Details
123
+
124
+ ### Model Description
125
+ - **Model Type:** SetFit
126
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
127
+ - **Classification head:** a OneVsRestClassifier instance
128
+ - **Maximum Sequence Length:** 512 tokens
129
+ - **Number of Classes:** 8 classes
130
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
131
+ <!-- - **Language:** Unknown -->
132
+ <!-- - **License:** Unknown -->
133
+
134
+ ### Model Sources
135
+
136
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
137
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
138
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
139
+
140
+ ## Evaluation
141
+
142
+ ### Metrics
143
+ | Label | F1_Micro | F1_Macro | F1_Weighted | Precision | Accuracy | Recall |
144
+ |:--------|:---------|:---------|:------------|:----------|:---------|:-------|
145
+ | **all** | 0.8505 | 0.3573 | 0.7613 | 0.9125 | 0.8797 | 0.7964 |
146
+
147
+ ## Uses
148
+
149
+ ### Direct Use for Inference
150
+
151
+ First install the SetFit library:
152
+
153
+ ```bash
154
+ pip install setfit
155
+ ```
156
+
157
+ Then you can load this model and run inference.
158
+
159
+ ```python
160
+ from setfit import SetFitModel
161
+
162
+ # Download from the 🤗 Hub
163
+ model = SetFitModel.from_pretrained("setfit_model_id")
164
+ # Run inference
165
+ preds = model("hasCreatedDate: 2024-11-20, hasCustomerHomeCountry: United States, hasCustomerID: 14347, hasCustomerName: Lowe's Companies Inc.(Lowe's USD), hasCutting: Trim to size, hasElementID: 3646411, hasElementTitle: RESET00002 PT BRITTEN, hasFinishedSizeHeight: 1, hasFinishedSizeWidth: 1, hasFlatSizeHeight: 1, hasFlatSizeWidth: 1, hasFscPaperBeenSpecified: No, hasInternalID: 47920581-39d1-4737-aa2e-32fdddebe3c3, hasMaterialCategory: Other, hasMaterialDescription: Other, hasMaterialType: Other, hasNumberOfVersions: 1, hasPrice: 0 USD, hasPrintedSides: Single sided, hasProofType: No proof required, hasQuantity: 1, hasRecycledContentBeenOffered: N/A, hasSupplierName: BRITTEN BANNERS(Britten Inc - 38859 - HHGSP), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), ")
166
+ ```
167
+
168
+ <!--
169
+ ### Downstream Use
170
+
171
+ *List how someone could finetune this model on their own dataset.*
172
+ -->
173
+
174
+ <!--
175
+ ### Out-of-Scope Use
176
+
177
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
178
+ -->
179
+
180
+ <!--
181
+ ## Bias, Risks and Limitations
182
+
183
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
184
+ -->
185
+
186
+ <!--
187
+ ### Recommendations
188
+
189
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
190
+ -->
191
+
192
+ ## Training Details
193
+
194
+ ### Training Set Metrics
195
+ | Training set | Min | Median | Max |
196
+ |:-------------|:----|:---------|:----|
197
+ | Word count | 69 | 111.6031 | 313 |
198
+
199
+ ### Framework Versions
200
+ - Python: 3.10.16
201
+ - SetFit: 1.1.1
202
+ - Sentence Transformers: 3.4.1
203
+ - Transformers: 4.49.0
204
+ - PyTorch: 2.6.0+cu124
205
+ - Datasets: 3.4.1
206
+ - Tokenizers: 0.21.1
207
+
208
+ ## Citation
209
+
210
+ ### BibTeX
211
+ ```bibtex
212
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
213
+ doi = {10.48550/ARXIV.2209.11055},
214
+ url = {https://arxiv.org/abs/2209.11055},
215
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
216
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
217
+ title = {Efficient Few-Shot Learning Without Prompts},
218
+ publisher = {arXiv},
219
+ year = {2022},
220
+ copyright = {Creative Commons Attribution 4.0 International}
221
+ }
222
+ ```
223
+
224
+ <!--
225
+ ## Glossary
226
+
227
+ *Clearly define terms in order to be accessible across audiences.*
228
+ -->
229
+
230
+ <!--
231
+ ## Model Card Authors
232
+
233
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
234
+ -->
235
+
236
+ <!--
237
+ ## Model Card Contact
238
+
239
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
240
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "avsolatorio/GIST-small-Embedding-v0",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.49.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "http://example.com/domain#ManufacturingDomain",
4
+ "http://example.com/domain#ProductDomain",
5
+ "http://example.com/domain#AssemblyDomain",
6
+ "http://example.com/domain#SupplierDomain",
7
+ "http://example.com/domain#MaterialDomain",
8
+ "http://example.com/domain#MeasurementDomain",
9
+ "http://example.com/domain#FeatureDomain",
10
+ "http://example.com/domain#ShippingAndHandlingDomain"
11
+ ],
12
+ "normalize_embeddings": false
13
+ }
heads/domain-router.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4d3d2dee16136f590aad71f365f7eb48cf7118e9667abada200996002635dd9
3
+ size 28404
heads/head_metadata.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "name": "domain-router",
4
+ "dataset_name": "Northell/ros-classifiers-domains-routing",
5
+ "dataset_revision": null,
6
+ "num_classes": 8,
7
+ "metrics": {
8
+ "f1_micro": 0.8504854368932039,
9
+ "f1_macro": 0.35725054393071265,
10
+ "f1_weighted": 0.7613078250339776,
11
+ "precision": 0.9125000238418579,
12
+ "accuracy": 0.879687488079071,
13
+ "recall": 0.7963636517524719
14
+ },
15
+ "pkl_cache": null
16
+ }
17
+ ]
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efa751a822b7eb0a7db5d0167b6e38ffd6ad1978e71de205d7c0efedcc18bf2a
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92197e97e8ca99ea116a8ecf46a0c475a21605c75b28ef89d27d0bfda7e4ca3a
3
+ size 28404
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff