File size: 7,123 Bytes
03d6ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2868def
03d6ff2
 
2868def
 
 
 
 
 
 
 
 
 
 
 
03d6ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import tensorflow as tf
from tensorflow.keras.layers import Conv2d,LayerNormalization,ZeroPadding2D,UpSampling2D,Activation
from tensorflow.keras import Model
from einops import rearrange
from math import sqrt
from functools import partial

# helpers

def exists(val):
    return val is not None

def cast_tuple(val, depth):
    return val if isinstance(val, tuple) else (val,) * depth

# classes

class DsConv2d:
    def __init__(self, dim_in, dim_out, kernel_size, padding, stride = 1, bias = True):
        self.net = tf.keras.Sequential()
        self.net.add(Conv2d(dim_in, kernel_size = kernel_size, strides = stride, use_bias = bias))
        self.net.add(ZeroPadding2D(padding))
        self.net.add(Conv2d(dim_out, kernel_size = 1, use_bias = bias))
        
    def __call__(self, x):
        return self.net(x)

class LayerNorm(tf.keras.layers.Layer):
    def __init__(self, dim, eps = 1e-5):
        self.eps = eps
        self.g = self.add_weight(
            name='g',
            shape=(1, dim, 1, 1),
            initializer=tf.keras.initializers.Ones(),
            trainable=True
        )
        self.b = self.add_weight(
            name='b',
            shape=(1, dim, 1, 1),
            initializer=tf.keras.initializers.Zeros(),
            trainable=True
        )

    def __call__(self, x):
        std = tf.math.sqrt(tf.math.reduce_variance(x, axis=1, keepdims=True))
        mean = tf.reduce_mean(x, axis= 1, keepdim = True)
        return (x - mean) / (std + self.eps) * self.g + self.b

class PreNorm:
    def __init__(self, dim, fn):
        self.fn = fn
        self.norm = LayerNormalization()

    def __call__(self, x):
        return self.fn(self.norm(x))

class EfficientSelfAttention:
    def __init__(
        self,
        dim,
        heads,
        reduction_ratio
    ):
        self.scale = (dim // heads) ** -0.5
        self.heads = heads

        self.to_q = Conv2d(dim, 1, use_bias = False)
        self.to_kv = Conv2d(dim * 2, reduction_ratio, strides = reduction_ratio, use_bias = False)
        self.to_out = Conv2d(dim, 1, use_bias = False)

    def __call__(self, x):
        h, w = x.shape[1], x.shape[2]
        heads = self.heads

        q, k, v = (self.to_q(x), *tf.split(self.to_kv(x), num_or_size_splits=2, axis=-1))
        q, k, v = map(lambda t: rearrange(t, 'b x y (h c) -> (b h) (x y) c', h = heads), (q, k, v))
        
        sim = tf.einsum('b i d, b j d -> b i j', q, k) * self.scale
        attn = tf.nn.softmax(sim)

        out = tf.einsum('b i j, b j d -> b i d', attn, v)
        out = rearrange(out, '(b h) (x y) c -> b x y (h c)', h = heads, x = h, y = w)
        return self.to_out(out)

class MixFeedForward:
    def __init__(
        self,
        dim,
        expansion_factor
    ):
        hidden_dim = dim * expansion_factor
        self.net = tf.keras.Sequential()
        self.net.add(Conv2d(hidden_dim, 1))
        self.net.add(DsConv2d(hidden_dim, hidden_dim, 3, padding = 1))
        self.net.add(Activation('gelu'))
        self.net.add(Conv2d(dim, 1))

    def __call__(self, x):
        return self.net(x)

class Unfold:
    def __init__(self, kernel, stride, padding):
        self.kernel = kernel
        self.stride = stride
        self.padding = padding
        self.zeropadding2d = ZeroPadding2D(padding)
    
    def __call__(self, x):
        x = self.zeropadding2d(x)
        x = tf.image.extract_patches(x, sizes=[1, self.kernel, self.kernel, 1], strides=[1, self.stride, self.stride, 1], rates=[1, 1, 1, 1], padding='VALID')
        x = tf.reshape(x, (x.shape[0], -1, x.shape[-1]))
        return x

class MiT:
    def __init__(
        self,
        channels,
        dims,
        heads,
        ff_expansion,
        reduction_ratio,
        num_layers
    ):
        stage_kernel_stride_pad = ((7, 4, 3), (3, 2, 1), (3, 2, 1), (3, 2, 1))

        dims = (channels, *dims)
        dim_pairs = list(zip(dims[:-1], dims[1:]))

        self.stages = []
        
        for (dim_in, dim_out), (kernel, stride, padding), num_layers, ff_expansion, heads, reduction_ratio in zip(dim_pairs, stage_kernel_stride_pad, num_layers, ff_expansion, heads, reduction_ratio):
            get_overlap_patches = Unfold(kernel, stride, padding)
            overlap_patch_embed = Conv2d(dim_out, 1)

            layers = []

            for _ in range(num_layers):
                layers.append([
                    PreNorm(dim_out, EfficientSelfAttention(dim = dim_out, heads = heads, reduction_ratio = reduction_ratio)),
                    PreNorm(dim_out, MixFeedForward(dim = dim_out, expansion_factor = ff_expansion)),
                ])

            self.stages.append([
                get_overlap_patches,
                overlap_patch_embed,
                layers
            ])

    def __call__(
        self,
        x,
        return_layer_outputs = False
    ):
        h, w = x.shape[1], x.shape[2]

        layer_outputs = []
        for (get_overlap_patches, overlap_embed, layers) in self.stages:
            x = get_overlap_patches(x)

            num_patches = x.shape[-2]
            ratio = int(sqrt((h * w) / num_patches))
            x = rearrange(x, 'b (h w) c -> b h w c', h = h // ratio)

            x = overlap_embed(x)
            for (attn, ff) in layers:
                x = attn(x) + x
                x = ff(x) + x

            layer_outputs.append(x)

        ret = x if not return_layer_outputs else layer_outputs
        return ret

class Segformer(Model):
    def __init__(
        self,
        dims = (32, 64, 160, 256),
        heads = (1, 2, 5, 8),
        ff_expansion = (8, 8, 4, 4),
        reduction_ratio = (8, 4, 2, 1),
        num_layers = 2,
        channels = 3,
        decoder_dim = 256,
        num_classes = 4
    ):
        super(Segformer, self).__init__()
        dims, heads, ff_expansion, reduction_ratio, num_layers = map(partial(cast_tuple, depth = 4), (dims, heads, ff_expansion, reduction_ratio, num_layers))
        assert all([*map(lambda t: len(t) == 4, (dims, heads, ff_expansion, reduction_ratio, num_layers))]), 'only four stages are allowed, all keyword arguments must be either a single value or a tuple of 4 values'

        self.mit = MiT(
            channels = channels,
            dims = dims,
            heads = heads,
            ff_expansion = ff_expansion,
            reduction_ratio = reduction_ratio,
            num_layers = num_layers
        )
        
        self.to_fused = []
        for i, dim in enumerate(dims):
            to_fused = tf.keras.Sequential()
            to_fused.add(Conv2d(decoder_dim, 1))
            to_fused.add(UpSampling2D(2 ** i))
            self.to_fused.append(to_fused)

        self.to_segmentation = tf.keras.Sequential()
        self.to_segmentation.add(Conv2d(decoder_dim, 1))
        self.to_segmentation.add(Conv2d(num_classes, 1))

    def __call__(self, x):
        layer_outputs = self.mit(x, return_layer_outputs = True)

        fused = [to_fused(output) for output, to_fused in zip(layer_outputs, self.to_fused)]
        fused = tf.concat(fused, axis = -1)
        return self.to_segmentation(fused)