GO-Term-Embeddings / README.md
NothingMuch's picture
Update README.md
ce8b012 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:40906
- loss:MatryoshkaLoss
- loss:MegaBatchMarginLoss
widget:
- source_sentence: >-
One of three laminate structures that form the spindle pole body; the inner
plaque is in the nucleus.
sentences:
- >-
maturation of SSU-rRNA from tetracistronic rRNA transcript (SSU-rRNA, 5.8S
rRNA, 2S rRNA, LSU-rRNA)
- leukotriene receptor activity
- inner plaque of spindle pole body
- source_sentence: >-
The covalent attachment of a myristoyl group to the N-terminal amino acid
residue of a protein.
sentences:
- MHC class I protein complex assembly
- N-terminal protein myristoylation
- neurotrophin receptor activity
- source_sentence: >-
The inner, i.e. lumen-facing, lipid bilayer of the plastid envelope; also
faces the plastid stroma.
sentences:
- plastid inner membrane
- neuron migration involved in retrograde extension
- stomatal complex morphogenesis
- source_sentence: >-
Initiation of a region of tissue in a plant that is composed of one or more
undifferentiated cells capable of undergoing mitosis and differentiation,
thereby effecting growth and development of a plant by giving rise to more
meristem or specialized tissue.
sentences:
- meristem initiation
- polytene chromosome
- cardiac ventricle development
- source_sentence: >-
The sex chromosome present in both sexes of species in which the male is the
heterogametic sex. Two copies of the X chromosome are present in each
somatic cell of females and one copy is present in males.
sentences:
- establishment of cell polarity involved in gastrulation cell migration
- X chromosome
- somatic diversification of immune receptors by N region addition
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- src2trg_accuracy
- trg2src_accuracy
- mean_accuracy
model-index:
- name: SentenceTransformer
results:
- task:
type: translation
name: Translation
dataset:
name: Unknown
type: unknown
metrics:
- type: src2trg_accuracy
value: 0.7840546697038724
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.7757023538344723
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.7798785117691723
name: Mean Accuracy
license: mit
language:
- en
base_model:
- Snowflake/snowflake-arctic-embed-m-v1.5
datasets:
- NothingMuch/GO-Terms
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained on the parquet dataset. It maps sentences & paragraphs to a 128-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 128 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- parquet
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NothingMuch/GO-Term-Embeddings")
# Run inference
sentences = [
'The sex chromosome present in both sexes of species in which the male is the heterogametic sex. Two copies of the X chromosome are present in each somatic cell of females and one copy is present in males.',
'X chromosome',
'somatic diversification of immune receptors by N region addition',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 128]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Translation
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
| Metric | Value |
|:------------------|:-----------|
| src2trg_accuracy | 0.7841 |
| trg2src_accuracy | 0.7757 |
| **mean_accuracy** | **0.7799** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### parquet
* Dataset: parquet
* Size: 40,906 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 42.05 tokens</li><li>max: 192 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.48 tokens</li><li>max: 40 tokens</li></ul> |
* Samples:
| anchor | positive |
|:------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------|
| <code>Catalysis of the transfer of a mannose residue to an oligosaccharide, forming an alpha-(1->6) linkage.</code> | <code>1,6-alpha-mannosyltransferase activity</code> |
| <code>Catalysis of the hydrolysis of ester linkages within a single-stranded deoxyribonucleic acid molecule by creating internal breaks.</code> | <code>single-stranded DNA specific endodeoxyribonuclease activity</code> |
| <code>Catalysis of the hydrolysis of ester linkages within a single-stranded deoxyribonucleic acid molecule by creating internal breaks.</code> | <code>ssDNA-specific endodeoxyribonuclease activity</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MegaBatchMarginLoss",
"matryoshka_dims": [
64,
32
],
"matryoshka_weights": [
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### parquet
* Dataset: parquet
* Size: 6,585 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 41.29 tokens</li><li>max: 253 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.23 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
| anchor | positive |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------|
| <code>The maintenance of the structure and integrity of the mitochondrial genome; includes replication and segregation of the mitochondrial chromosome.</code> | <code>mitochondrial genome maintenance</code> |
| <code>The repair of single strand breaks in DNA. Repair of such breaks is mediated by the same enzyme systems as are used in base excision repair.</code> | <code>single strand break repair</code> |
| <code>Any process that modulates the frequency, rate or extent of DNA recombination, a DNA metabolic process in which a new genotype is formed by reassortment of genes resulting in gene combinations different from those that were present in the parents.</code> | <code>regulation of DNA recombination</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MegaBatchMarginLoss",
"matryoshka_dims": [
64,
32
],
"matryoshka_weights": [
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `torch_empty_cache_steps`: 250
- `learning_rate`: 0.00025
- `lr_scheduler_type`: cosine_with_restarts
- `warmup_steps`: 25
- `seed`: 25
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: 250
- `learning_rate`: 0.00025
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 25
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 25
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | mean_accuracy |
|:----------:|:--------:|:-------------:|:---------------:|:-------------:|
| 1.0016 | 641 | 0.2501 | 0.6276 | 0.7343 |
| 2.0016 | 1282 | 0.3146 | 0.5520 | 0.7651 |
| **2.9969** | **1920** | **0.1976** | **0.5097** | **0.7799** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.4.0
- Accelerate: 1.2.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MegaBatchMarginLoss
```bibtex
@inproceedings{wieting-gimpel-2018-paranmt,
title = "{P}ara{NMT}-50{M}: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations",
author = "Wieting, John and Gimpel, Kevin",
editor = "Gurevych, Iryna and Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1042",
doi = "10.18653/v1/P18-1042",
pages = "451--462",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->