|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:40906 |
|
- loss:MatryoshkaLoss |
|
- loss:MegaBatchMarginLoss |
|
widget: |
|
- source_sentence: >- |
|
One of three laminate structures that form the spindle pole body; the inner |
|
plaque is in the nucleus. |
|
sentences: |
|
- >- |
|
maturation of SSU-rRNA from tetracistronic rRNA transcript (SSU-rRNA, 5.8S |
|
rRNA, 2S rRNA, LSU-rRNA) |
|
- leukotriene receptor activity |
|
- inner plaque of spindle pole body |
|
- source_sentence: >- |
|
The covalent attachment of a myristoyl group to the N-terminal amino acid |
|
residue of a protein. |
|
sentences: |
|
- MHC class I protein complex assembly |
|
- N-terminal protein myristoylation |
|
- neurotrophin receptor activity |
|
- source_sentence: >- |
|
The inner, i.e. lumen-facing, lipid bilayer of the plastid envelope; also |
|
faces the plastid stroma. |
|
sentences: |
|
- plastid inner membrane |
|
- neuron migration involved in retrograde extension |
|
- stomatal complex morphogenesis |
|
- source_sentence: >- |
|
Initiation of a region of tissue in a plant that is composed of one or more |
|
undifferentiated cells capable of undergoing mitosis and differentiation, |
|
thereby effecting growth and development of a plant by giving rise to more |
|
meristem or specialized tissue. |
|
sentences: |
|
- meristem initiation |
|
- polytene chromosome |
|
- cardiac ventricle development |
|
- source_sentence: >- |
|
The sex chromosome present in both sexes of species in which the male is the |
|
heterogametic sex. Two copies of the X chromosome are present in each |
|
somatic cell of females and one copy is present in males. |
|
sentences: |
|
- establishment of cell polarity involved in gastrulation cell migration |
|
- X chromosome |
|
- somatic diversification of immune receptors by N region addition |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- src2trg_accuracy |
|
- trg2src_accuracy |
|
- mean_accuracy |
|
model-index: |
|
- name: SentenceTransformer |
|
results: |
|
- task: |
|
type: translation |
|
name: Translation |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: src2trg_accuracy |
|
value: 0.7840546697038724 |
|
name: Src2Trg Accuracy |
|
- type: trg2src_accuracy |
|
value: 0.7757023538344723 |
|
name: Trg2Src Accuracy |
|
- type: mean_accuracy |
|
value: 0.7798785117691723 |
|
name: Mean Accuracy |
|
license: mit |
|
language: |
|
- en |
|
base_model: |
|
- Snowflake/snowflake-arctic-embed-m-v1.5 |
|
datasets: |
|
- NothingMuch/GO-Terms |
|
--- |
|
|
|
# SentenceTransformer |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model trained on the parquet dataset. It maps sentences & paragraphs to a 128-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 128 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- parquet |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("NothingMuch/GO-Term-Embeddings") |
|
# Run inference |
|
sentences = [ |
|
'The sex chromosome present in both sexes of species in which the male is the heterogametic sex. Two copies of the X chromosome are present in each somatic cell of females and one copy is present in males.', |
|
'X chromosome', |
|
'somatic diversification of immune receptors by N region addition', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 128] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Translation |
|
|
|
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator) |
|
|
|
| Metric | Value | |
|
|:------------------|:-----------| |
|
| src2trg_accuracy | 0.7841 | |
|
| trg2src_accuracy | 0.7757 | |
|
| **mean_accuracy** | **0.7799** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### parquet |
|
|
|
* Dataset: parquet |
|
* Size: 40,906 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 42.05 tokens</li><li>max: 192 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.48 tokens</li><li>max: 40 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------| |
|
| <code>Catalysis of the transfer of a mannose residue to an oligosaccharide, forming an alpha-(1->6) linkage.</code> | <code>1,6-alpha-mannosyltransferase activity</code> | |
|
| <code>Catalysis of the hydrolysis of ester linkages within a single-stranded deoxyribonucleic acid molecule by creating internal breaks.</code> | <code>single-stranded DNA specific endodeoxyribonuclease activity</code> | |
|
| <code>Catalysis of the hydrolysis of ester linkages within a single-stranded deoxyribonucleic acid molecule by creating internal breaks.</code> | <code>ssDNA-specific endodeoxyribonuclease activity</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MegaBatchMarginLoss", |
|
"matryoshka_dims": [ |
|
64, |
|
32 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### parquet |
|
|
|
* Dataset: parquet |
|
* Size: 6,585 evaluation samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 41.29 tokens</li><li>max: 253 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.23 tokens</li><li>max: 44 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------| |
|
| <code>The maintenance of the structure and integrity of the mitochondrial genome; includes replication and segregation of the mitochondrial chromosome.</code> | <code>mitochondrial genome maintenance</code> | |
|
| <code>The repair of single strand breaks in DNA. Repair of such breaks is mediated by the same enzyme systems as are used in base excision repair.</code> | <code>single strand break repair</code> | |
|
| <code>Any process that modulates the frequency, rate or extent of DNA recombination, a DNA metabolic process in which a new genotype is formed by reassortment of genes resulting in gene combinations different from those that were present in the parents.</code> | <code>regulation of DNA recombination</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MegaBatchMarginLoss", |
|
"matryoshka_dims": [ |
|
64, |
|
32 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `torch_empty_cache_steps`: 250 |
|
- `learning_rate`: 0.00025 |
|
- `lr_scheduler_type`: cosine_with_restarts |
|
- `warmup_steps`: 25 |
|
- `seed`: 25 |
|
- `load_best_model_at_end`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: 250 |
|
- `learning_rate`: 0.00025 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine_with_restarts |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 25 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 25 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | mean_accuracy | |
|
|:----------:|:--------:|:-------------:|:---------------:|:-------------:| |
|
| 1.0016 | 641 | 0.2501 | 0.6276 | 0.7343 | |
|
| 2.0016 | 1282 | 0.3146 | 0.5520 | 0.7651 | |
|
| **2.9969** | **1920** | **0.1976** | **0.5097** | **0.7799** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.0 |
|
- PyTorch: 2.4.0 |
|
- Accelerate: 1.2.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MegaBatchMarginLoss |
|
```bibtex |
|
@inproceedings{wieting-gimpel-2018-paranmt, |
|
title = "{P}ara{NMT}-50{M}: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations", |
|
author = "Wieting, John and Gimpel, Kevin", |
|
editor = "Gurevych, Iryna and Miyao, Yusuke", |
|
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = jul, |
|
year = "2018", |
|
address = "Melbourne, Australia", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P18-1042", |
|
doi = "10.18653/v1/P18-1042", |
|
pages = "451--462", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |