Overview

The purpose of this model is to create a base model for creating Nurture Intelligence. After merging a model that is good at ASEAN language, a model that is good at Japanese language, and a model with high basic intelligence, the instruct Models trained on the dataset.

We would like to thank all those who created the original model!

How to use

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "Nurture-intelligence/kEy-llama3.1-8b-v0.1"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")

messages = [
    {"role": "user", "content": "θ‡ͺε·±ζˆι•·γ™γ‚‹LLMγ‚’δ½œγ‚‹γ«γ‚γŸγ£γ¦ε€§εˆ‡γͺことを5γ€γŠγ—γˆγ¦γγ γ•γ„γ€‚"},
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(input_ids,
    do_sample=True,
    temperature=0.2, ## Recommend 0.6 or lower
    max_new_tokens=1024
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

Used model

Configuration

The following YAML configuration was used to produce this model: ```yaml

models: model: meditsolutions/Llama-3.1-MedIT-SUN-8B


- model: meditsolutions/Llama-3.1-MedIT-SUN-8B
parameters: weight: 1.0
weight: 1.0
- model: elyza/Llama-3-ELYZA-JP-8B
parameters: weight: 0.3
weight: 0.3
- model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
parameters: weight: 0.5
weight: 0.5


merge_method: breadcrumbs
base_model: meditsolutions/Llama-3.1-MedIT-SUN-8B
dtype: bfloat16

Downloads last month
5
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for Nurture-intelligence/kEy-llama3.1-8b-v0.1